Positive solutions to a class of elastic beam equations with semipositone nonlinearity
Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 35-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $h\in L^{1}[0,1]\cap C(0,1)$ be nonnegative and $f(t,u,v)+h(t)\geq 0$. We study the existence and multiplicity of positive solutions for the nonlinear fourth-order two-point boundary value problem $$ u^{(4)}(t)=f(t,u(t),u^{\prime }(t)),\quad\ 0 t 1,\quad\ u(0)=u^{\prime }(0)=u^{\prime }(1)=u^{\prime \prime \prime }(1)=0, $$ where the nonlinear term $f(t,u,v)$ may be singular at $t=0$ and $t=1$. By constructing a suitable cone and integrating certain height functions of $f(t,u,v)$ on some bounded sets, several new results are obtained. In mechanics, the problem models the deflection of an elastic beam fixed at the left end and clamped at the right end by sliding clamps.
DOI : 10.4064/ap97-1-3
Keywords: cap nonnegative v geq study existence multiplicity positive solutions nonlinear fourth order two point boundary value problem t prime quad quad prime prime prime prime prime where nonlinear term v may singular constructing suitable cone integrating certain height functions v bounded sets several results obtained mechanics problem models deflection elastic beam fixed end clamped right end sliding clamps

Qingliu Yao 1

1 Department of Applied Mathematics Nanjing University of Finance and Economics Nanjing 210003, P.R. China
@article{10_4064_ap97_1_3,
     author = {Qingliu Yao},
     title = {Positive solutions to a class of elastic
beam equations with semipositone nonlinearity},
     journal = {Annales Polonici Mathematici},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2010},
     doi = {10.4064/ap97-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-3/}
}
TY  - JOUR
AU  - Qingliu Yao
TI  - Positive solutions to a class of elastic
beam equations with semipositone nonlinearity
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 35
EP  - 50
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-3/
DO  - 10.4064/ap97-1-3
LA  - en
ID  - 10_4064_ap97_1_3
ER  - 
%0 Journal Article
%A Qingliu Yao
%T Positive solutions to a class of elastic
beam equations with semipositone nonlinearity
%J Annales Polonici Mathematici
%D 2010
%P 35-50
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-3/
%R 10.4064/ap97-1-3
%G en
%F 10_4064_ap97_1_3
Qingliu Yao. Positive solutions to a class of elastic
beam equations with semipositone nonlinearity. Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 35-50. doi : 10.4064/ap97-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-3/

Cité par Sources :