Lower bounds for Jung constants of Orlicz sequence spaces
Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 23-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A new lower bound for the Jung constant $JC(l^{({\mit\Phi})})$
of the Orlicz sequence space $l^{({\mit\Phi})}$
defined by an $N$-function ${\mit\Phi}$ is found. It is proved that if
$l^{({\mit\Phi})}$ is reflexive and the function $t{\mit\Phi}'(t)/{\mit\Phi}(t)$ is
increasing on $(0,{\mit\Phi}^{-1}(1)]$, then
$$
JC(l^{({\mit\Phi})})\geq \frac{{\mit\Phi}^{-1}({1}/{2})}{{\mit\Phi}^{-1}(1)}.
$$
Examples in Section 3 show that the above estimate is better than in
Zhang's paper (2003) in some cases and that the results
given in Yan's paper (2004) are not accurate.
Keywords:
lower bound jung constant mit phi orlicz sequence space mit phi defined n function mit phi found proved mit phi reflexive function mit phi mit phi increasing mit phi mit phi geq frac mit phi mit phi examples section above estimate better zhangs paper cases results given yans paper accurate
Affiliations des auteurs :
Z. D. Ren 1
@article{10_4064_ap97_1_2,
author = {Z. D. Ren},
title = {Lower bounds for {Jung} constants of {Orlicz} sequence spaces},
journal = {Annales Polonici Mathematici},
pages = {23--34},
publisher = {mathdoc},
volume = {97},
number = {1},
year = {2010},
doi = {10.4064/ap97-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-2/}
}
Z. D. Ren. Lower bounds for Jung constants of Orlicz sequence spaces. Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 23-34. doi: 10.4064/ap97-1-2
Cité par Sources :