Cousin-I spaces and domains of holomorphy
Annales Polonici Mathematici, Tome 96 (2009) no. 1, pp. 51-60.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a Cousin-I open set $ D$ of an irreducible projective surface $X$ is locally Stein at every boundary point which lies in $X_{\rm reg} $. In particular, Cousin-I proper open sets of ${\mathbb P}^2$ are Stein. We also study $K$-envelopes of holomorphy of $K$-complete spaces.
DOI : 10.4064/ap96-1-4
Keywords: prove cousin i set irreducible projective surface locally stein every boundary point which lies reg particular cousin i proper sets mathbb stein study k envelopes holomorphy k complete spaces

Ilie Bârză 1 ; Viorel Vâjâitu 2

1 Department of Mathematics Karlstad University SE-651 88 Karlstad, Sweden
2 Laboratoire Paul Painlevé Université des Sciences et Technologies de Lille 1 Bât. M2 F-59655 Villeneuve d'Ascq Cedex, France
@article{10_4064_ap96_1_4,
     author = {Ilie B\^arz\u{a} and Viorel V\^aj\^aitu},
     title = {Cousin-I spaces and domains of holomorphy},
     journal = {Annales Polonici Mathematici},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2009},
     doi = {10.4064/ap96-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap96-1-4/}
}
TY  - JOUR
AU  - Ilie Bârză
AU  - Viorel Vâjâitu
TI  - Cousin-I spaces and domains of holomorphy
JO  - Annales Polonici Mathematici
PY  - 2009
SP  - 51
EP  - 60
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap96-1-4/
DO  - 10.4064/ap96-1-4
LA  - en
ID  - 10_4064_ap96_1_4
ER  - 
%0 Journal Article
%A Ilie Bârză
%A Viorel Vâjâitu
%T Cousin-I spaces and domains of holomorphy
%J Annales Polonici Mathematici
%D 2009
%P 51-60
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap96-1-4/
%R 10.4064/ap96-1-4
%G en
%F 10_4064_ap96_1_4
Ilie Bârză; Viorel Vâjâitu. Cousin-I spaces and domains of holomorphy. Annales Polonici Mathematici, Tome 96 (2009) no. 1, pp. 51-60. doi : 10.4064/ap96-1-4. http://geodesic.mathdoc.fr/articles/10.4064/ap96-1-4/

Cité par Sources :