Dynamical systems method for solving linear ill-posed problems
Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 253-272.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Various versions of the Dynamical Systems Method (DSM) are proposed for solving linear ill-posed problems with bounded and unbounded operators. Convergence of the proposed methods is proved. Some new results concerning the discrepancy principle for choosing the regularization parameter are obtained.
DOI : 10.4064/ap95-3-5
Keywords: various versions dynamical systems method dsm proposed solving linear ill posed problems bounded unbounded operators convergence proposed methods proved results concerning discrepancy principle choosing regularization parameter obtained

A. G. Ramm 1

1 Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ap95_3_5,
     author = {A. G. Ramm},
     title = {Dynamical systems method for solving
 linear ill-posed problems},
     journal = {Annales Polonici Mathematici},
     pages = {253--272},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2009},
     doi = {10.4064/ap95-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Dynamical systems method for solving
 linear ill-posed problems
JO  - Annales Polonici Mathematici
PY  - 2009
SP  - 253
EP  - 272
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-5/
DO  - 10.4064/ap95-3-5
LA  - en
ID  - 10_4064_ap95_3_5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Dynamical systems method for solving
 linear ill-posed problems
%J Annales Polonici Mathematici
%D 2009
%P 253-272
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-5/
%R 10.4064/ap95-3-5
%G en
%F 10_4064_ap95_3_5
A. G. Ramm. Dynamical systems method for solving
 linear ill-posed problems. Annales Polonici Mathematici, Tome 95 (2009) no. 3, pp. 253-272. doi : 10.4064/ap95-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ap95-3-5/

Cité par Sources :