Geometry of Puiseux expansions
Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 263-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the space $\mathrm{Curv}$ of complex affine lines $%
t\mapsto(x,y)=(\phi(t),\psi(t))$ with monic polynomials $\phi$, $\psi$ of fixed
degrees and a map $\mathrm{Expan}$ from $\mathrm{Curv}$ to a complex affine
space $\mathrm{Puis}$ with $\dim\mathrm{Curv}=\dim\mathrm{Puis}$, which is
defined by initial Puiseux coefficients of the Puiseux expansion of the
curve at infinity. We present some unexpected relations between geometrical
properties of the curves $(\phi,\psi)$ and singularities of the map $\mathrm{%
Expan}$. For example, the curve $(\phi,\psi)$ has a cuspidal singularity iff
it is a critical point of $\mathrm{Expan}$. We calculate the geometric
degree of $\mathrm{Expan}$ in the cases $\gcd(\deg\phi,\deg\psi)\le 2$ and
describe the non-properness set of $\mathrm{Expan}$.
Keywords:
consider space mathrm curv complex affine lines mapsto phi psi monic polynomials phi psi fixed degrees map mathrm expan mathrm curv complex affine space mathrm puis dim mathrm curv dim mathrm puis which defined initial puiseux coefficients puiseux expansion curve infinity present unexpected relations between geometrical properties curves phi psi singularities map mathrm expan example curve phi psi has cuspidal singularity critical point mathrm expan calculate geometric degree mathrm expan cases gcd deg phi deg psi describe non properness set mathrm expan
Affiliations des auteurs :
Maciej Borodzik 1 ; Henryk /Zo/l/adek 1
@article{10_4064_ap93_3_7,
author = {Maciej Borodzik and Henryk /Zo/l/adek},
title = {Geometry of {Puiseux} expansions},
journal = {Annales Polonici Mathematici},
pages = {263--280},
year = {2008},
volume = {93},
number = {3},
doi = {10.4064/ap93-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-7/}
}
Maciej Borodzik; Henryk /Zo/l/adek. Geometry of Puiseux expansions. Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 263-280. doi: 10.4064/ap93-3-7
Cité par Sources :