We consider the space $\mathrm{Curv}$ of complex affine lines $%
t\mapsto(x,y)=(\phi(t),\psi(t))$ with monic polynomials $\phi$, $\psi$ of fixed
degrees and a map $\mathrm{Expan}$ from $\mathrm{Curv}$ to a complex affine
space $\mathrm{Puis}$ with $\dim\mathrm{Curv}=\dim\mathrm{Puis}$, which is
defined by initial Puiseux coefficients of the Puiseux expansion of the
curve at infinity. We present some unexpected relations between geometrical
properties of the curves $(\phi,\psi)$ and singularities of the map $\mathrm{%
Expan}$. For example, the curve $(\phi,\psi)$ has a cuspidal singularity iff
it is a critical point of $\mathrm{Expan}$. We calculate the geometric
degree of $\mathrm{Expan}$ in the cases $\gcd(\deg\phi,\deg\psi)\le 2$ and
describe the non-properness set of $\mathrm{Expan}$.
@article{10_4064_ap93_3_7,
author = {Maciej Borodzik and Henryk /Zo/l/adek},
title = {Geometry of {Puiseux} expansions},
journal = {Annales Polonici Mathematici},
pages = {263--280},
year = {2008},
volume = {93},
number = {3},
doi = {10.4064/ap93-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-7/}
}
TY - JOUR
AU - Maciej Borodzik
AU - Henryk /Zo/l/adek
TI - Geometry of Puiseux expansions
JO - Annales Polonici Mathematici
PY - 2008
SP - 263
EP - 280
VL - 93
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-7/
DO - 10.4064/ap93-3-7
LA - en
ID - 10_4064_ap93_3_7
ER -
%0 Journal Article
%A Maciej Borodzik
%A Henryk /Zo/l/adek
%T Geometry of Puiseux expansions
%J Annales Polonici Mathematici
%D 2008
%P 263-280
%V 93
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap93-3-7/
%R 10.4064/ap93-3-7
%G en
%F 10_4064_ap93_3_7
Maciej Borodzik; Henryk /Zo/l/adek. Geometry of Puiseux expansions. Annales Polonici Mathematici, Tome 93 (2008) no. 3, pp. 263-280. doi: 10.4064/ap93-3-7