A symmetry problem
Annales Polonici Mathematici, Tome 92 (2007) no. 1, pp. 49-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider the Newtonian potential of a homogeneous bounded body $D\subset \mathbb R^3$ with known constant density and connected complement. If this potential equals $c/|x|$ in a neighborhood of infinity, where $c>0$ is a constant, then the body is a ball. This known result is now proved by a different simple method. The method can be applied to other problems.
DOI : 10.4064/ap92-1-5
Keywords: consider newtonian potential homogeneous bounded body subset mathbb known constant density connected complement potential equals neighborhood infinity where constant body ball known result proved different simple method method applied other problems

A. G. Ramm 1

1 Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ap92_1_5,
     author = {A. G. Ramm},
     title = {A symmetry problem},
     journal = {Annales Polonici Mathematici},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2007},
     doi = {10.4064/ap92-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap92-1-5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - A symmetry problem
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 49
EP  - 54
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap92-1-5/
DO  - 10.4064/ap92-1-5
LA  - en
ID  - 10_4064_ap92_1_5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T A symmetry problem
%J Annales Polonici Mathematici
%D 2007
%P 49-54
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap92-1-5/
%R 10.4064/ap92-1-5
%G en
%F 10_4064_ap92_1_5
A. G. Ramm. A symmetry problem. Annales Polonici Mathematici, Tome 92 (2007) no. 1, pp. 49-54. doi : 10.4064/ap92-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap92-1-5/

Cité par Sources :