On the Helmholtz operator of variational calculus in fibered-fibered manifolds
Annales Polonici Mathematici, Tome 90 (2007) no. 1, pp. 59-76.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A fibered-fibered manifold is a surjective fibered submersion $\pi :Y\to X$ between fibered manifolds. For natural numbers $s\geq r\leq q$ an $(r,s,q)$th order Lagrangian on a fibered-fibered manifold $\pi :Y\to X$ is a base-preserving morphism $\lambda :J^{r,s,q}Y\to \bigwedge ^{\mathop {\rm dim}X}T^*X$. For $p={\mathop {\rm max}}(q,s)$ there exists a canonical Euler morphism ${\mathcal E}(\lambda ):J^{r+s,2s,r+p}Y\to {\mathcal V}^*Y\otimes \bigwedge ^{\mathop {\rm dim}X}T^*X$ satisfying a decomposition property similar to the one in the fibered manifold case, and the critical fibered sections $\sigma $ of $Y$ are exactly the solutions of the Euler–Lagrange equation ${\mathcal E}(\lambda )\circ j^{r+s,2s,r+p}\sigma =0$. In the present paper, similarly to the fibered manifold case, for any morphism $B:J^{r,s,q}Y\to {\mathcal V}^*Y\otimes \bigwedge ^mT^*X$ over $Y$, $s\geq r\leq q$, we define canonically a Helmholtz morphism ${\mathcal H}(B) :J^{s+p,s+p,2p}Y\to {\mathcal V}^*J^{r,s,r}Y\otimes {\mathcal V}^*Y\otimes \bigwedge ^{\mathop {\rm dim} X}T^*X$, and prove that a morphism $B:J^{r+s,2s,r+p}Y\to {\mathcal V}^*Y\otimes \bigwedge T^*M$ over $Y$ is locally variational (i.e. locally of the form $B={\mathcal E}(\lambda )$ for some $(r,s,p)$th order Lagrangian $\lambda $) if and only if ${\mathcal H}(B)=0$, where $p={\mathop {\rm max}}(s,q)$. Next, we study naturality of the Helmholtz morphism ${\mathcal H}(B)$ on fibered-fibered manifolds $Y$ of dimension $(m_1,m_2,n_1,n_2)$. We prove that any natural operator of the Helmholtz morphism type is $c{\mathcal H}(B)$, $c\in {{\mathbb R}}$, if $n_2\geq 2$.
DOI : 10.4064/ap90-1-5
Keywords: fibered fibered manifold surjective fibered submersion between fibered manifolds natural numbers geq leq order lagrangian fibered fibered manifold base preserving morphism lambda y bigwedge mathop dim *x mathop max there exists canonical euler morphism mathcal lambda y mathcal *y otimes bigwedge mathop dim *x satisfying decomposition property similar the fibered manifold critical fibered sections sigma exactly solutions euler lagrange equation mathcal lambda circ sigma present paper similarly fibered manifold morphism y mathcal *y otimes bigwedge *x geq leq define canonically helmholtz morphism mathcal p mathcal *j y otimes mathcal *y otimes bigwedge mathop dim *x prove morphism y mathcal *y otimes bigwedge *m locally variational locally form mathcal lambda order lagrangian lambda only mathcal where mathop max study naturality helmholtz morphism mathcal fibered fibered manifolds dimension prove natural operator helmholtz morphism type mathcal mathbb geq

W. M. Mikulski 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ap90_1_5,
     author = {W. M. Mikulski},
     title = {On the {Helmholtz} operator of variational calculus
 in fibered-fibered manifolds},
     journal = {Annales Polonici Mathematici},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {2007},
     doi = {10.4064/ap90-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-5/}
}
TY  - JOUR
AU  - W. M. Mikulski
TI  - On the Helmholtz operator of variational calculus
 in fibered-fibered manifolds
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 59
EP  - 76
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-5/
DO  - 10.4064/ap90-1-5
LA  - en
ID  - 10_4064_ap90_1_5
ER  - 
%0 Journal Article
%A W. M. Mikulski
%T On the Helmholtz operator of variational calculus
 in fibered-fibered manifolds
%J Annales Polonici Mathematici
%D 2007
%P 59-76
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-5/
%R 10.4064/ap90-1-5
%G en
%F 10_4064_ap90_1_5
W. M. Mikulski. On the Helmholtz operator of variational calculus
 in fibered-fibered manifolds. Annales Polonici Mathematici, Tome 90 (2007) no. 1, pp. 59-76. doi : 10.4064/ap90-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap90-1-5/

Cité par Sources :