Weierstrass division theorem in definable
$C^{\infty}$
germs in a polynomially bounded o-minimal structure
Annales Polonici Mathematici, Tome 89 (2006) no. 2, pp. 127-137
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give some examples of polynomially bounded
o-minimal expansions of the ordered field of real
numbers where the Weierstrass division theorem does not hold in
the ring of germs, at the origin of $\mathbb{R}^n$, of definable
$C^{\infty}$ functions.
Keywords:
examples polynomially bounded o minimal expansions ordered field real numbers where weierstrass division theorem does ring germs origin mathbb definable infty functions
Affiliations des auteurs :
Abdelhafed Elkhadiri 1 ; Hassan Sfouli 1
@article{10_4064_ap89_2_2,
author = {Abdelhafed Elkhadiri and Hassan Sfouli},
title = {Weierstrass division theorem in definable
$C^{\infty}$
germs in a polynomially bounded o-minimal structure},
journal = {Annales Polonici Mathematici},
pages = {127--137},
publisher = {mathdoc},
volume = {89},
number = {2},
year = {2006},
doi = {10.4064/ap89-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap89-2-2/}
}
TY - JOUR
AU - Abdelhafed Elkhadiri
AU - Hassan Sfouli
TI - Weierstrass division theorem in definable
$C^{\infty}$
germs in a polynomially bounded o-minimal structure
JO - Annales Polonici Mathematici
PY - 2006
SP - 127
EP - 137
VL - 89
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap89-2-2/
DO - 10.4064/ap89-2-2
LA - en
ID - 10_4064_ap89_2_2
ER -
%0 Journal Article
%A Abdelhafed Elkhadiri
%A Hassan Sfouli
%T Weierstrass division theorem in definable
$C^{\infty}$
germs in a polynomially bounded o-minimal structure
%J Annales Polonici Mathematici
%D 2006
%P 127-137
%V 89
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap89-2-2/
%R 10.4064/ap89-2-2
%G en
%F 10_4064_ap89_2_2
Abdelhafed Elkhadiri; Hassan Sfouli. Weierstrass division theorem in definable
$C^{\infty}$
germs in a polynomially bounded o-minimal structure. Annales Polonici Mathematici, Tome 89 (2006) no. 2, pp. 127-137. doi: 10.4064/ap89-2-2
Cité par Sources :