Integer points on a curve and
the plane Jacobian problem
Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 53-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A polynomial map $F=(P,Q)\in {\mathbb Z} [x,y]^2$ with Jacobian
$JF:=P_xQ_y-P_yQ_x\equiv 1$ has a polynomial inverse with integer
coefficients if the complex plane curve $P=0$ has infinitely many integer
points.
Keywords:
polynomial map mathbb jacobian y p equiv has polynomial inverse integer coefficients complex plane curve has infinitely many integer points
Affiliations des auteurs :
Nguyen Van Chau 1
@article{10_4064_ap88_1_4,
author = {Nguyen Van Chau},
title = {Integer points on a curve and
the plane {Jacobian} problem},
journal = {Annales Polonici Mathematici},
pages = {53--58},
publisher = {mathdoc},
volume = {88},
number = {1},
year = {2006},
doi = {10.4064/ap88-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-4/}
}
Nguyen Van Chau. Integer points on a curve and the plane Jacobian problem. Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 53-58. doi: 10.4064/ap88-1-4
Cité par Sources :