1Faculty of Mathematics Computer Science and Econometrics University of Zielona Góra Szafrana 4a 65-516 Zielona Góra, Poland 2Faculty of Mathematics Computer Science and Econometrics University of Zielona Góra Szafrana 4a 65-516 Zielona Góra, Poland and Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 39-51
Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means $M,N,K$ such that $K$ is $(M,N)$-invariant, that is, $K\circ (M,N)=K.$ Some applications to iteration theory and functional equations are presented.
Keywords:
under assumption twice continuous differentiability functions involved determine weighted quasi arithmetic means invariant circ applications iteration theory functional equations presented
Affiliations des auteurs :
Justyna Jarczyk 
1
;
Janusz Matkowski 
2
1
Faculty of Mathematics Computer Science and Econometrics University of Zielona Góra Szafrana 4a 65-516 Zielona Góra, Poland
2
Faculty of Mathematics Computer Science and Econometrics University of Zielona Góra Szafrana 4a 65-516 Zielona Góra, Poland and Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_ap88_1_3,
author = {Justyna Jarczyk and Janusz Matkowski},
title = {Invariance in the class of weighted quasi-arithmetic means},
journal = {Annales Polonici Mathematici},
pages = {39--51},
year = {2006},
volume = {88},
number = {1},
doi = {10.4064/ap88-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-3/}
}
TY - JOUR
AU - Justyna Jarczyk
AU - Janusz Matkowski
TI - Invariance in the class of weighted quasi-arithmetic means
JO - Annales Polonici Mathematici
PY - 2006
SP - 39
EP - 51
VL - 88
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-3/
DO - 10.4064/ap88-1-3
LA - en
ID - 10_4064_ap88_1_3
ER -
%0 Journal Article
%A Justyna Jarczyk
%A Janusz Matkowski
%T Invariance in the class of weighted quasi-arithmetic means
%J Annales Polonici Mathematici
%D 2006
%P 39-51
%V 88
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-3/
%R 10.4064/ap88-1-3
%G en
%F 10_4064_ap88_1_3
Justyna Jarczyk; Janusz Matkowski. Invariance in the class of weighted quasi-arithmetic means. Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 39-51. doi: 10.4064/ap88-1-3