Invariance in the class of weighted quasi-arithmetic means
Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 39-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means $M,N,K$ such that $K$ is $(M,N)$-invariant, that is, $K\circ (M,N)=K.$ Some applications to iteration theory and functional equations are presented.
Keywords:
under assumption twice continuous differentiability functions involved determine weighted quasi arithmetic means invariant circ applications iteration theory functional equations presented
Affiliations des auteurs :
Justyna Jarczyk 1 ; Janusz Matkowski 2
@article{10_4064_ap88_1_3,
author = {Justyna Jarczyk and Janusz Matkowski},
title = {Invariance in the class of weighted quasi-arithmetic means},
journal = {Annales Polonici Mathematici},
pages = {39--51},
publisher = {mathdoc},
volume = {88},
number = {1},
year = {2006},
doi = {10.4064/ap88-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-3/}
}
TY - JOUR AU - Justyna Jarczyk AU - Janusz Matkowski TI - Invariance in the class of weighted quasi-arithmetic means JO - Annales Polonici Mathematici PY - 2006 SP - 39 EP - 51 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-3/ DO - 10.4064/ap88-1-3 LA - en ID - 10_4064_ap88_1_3 ER -
Justyna Jarczyk; Janusz Matkowski. Invariance in the class of weighted quasi-arithmetic means. Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 39-51. doi: 10.4064/ap88-1-3
Cité par Sources :