Universal sequences for Zalcman's
Lemma and $Q_m$-normality
Annales Polonici Mathematici, Tome 85 (2005) no. 3, pp. 251-260
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of sequences
$\{\varrho_n\}_{n=1}^\infty$, $\varrho_n\to 0^+$, and
$\{z_n\}_{n=1}^\infty$, $|z_n|=
{1}/{2}$, such that for every
$\alpha \in\mathbb R$ and for every
meromorphic function $G(z)$ on $\mathbb C$,
there
exists a meromorphic function $F(z)=F_{G,\alpha}(z)$
on $\mathbb C$ such that
$\varrho_n^\alpha F(nz_n+n\varrho_n\zeta)$
%%\overset \chi\Rightarrow
converges to
$G(\zeta)$ uniformly on compact
subsets of $\mathbb C$ in the spherical metric.
As a result, we construct a family of
functions meromorphic on the unit
disk that is $Q_m$-normal for no $m\ge 1$ and on which
an extension of Zalcman's Lemma holds.
Keywords:
prove existence sequences varrho infty varrho infty every alpha mathbb every meromorphic function mathbb there exists meromorphic function alpha mathbb varrho alpha varrho zeta overset chi rightarrow converges zeta uniformly compact subsets mathbb spherical metric result construct family functions meromorphic unit disk m normal which extension zalcmans lemma holds
Affiliations des auteurs :
Shahar Nevo 1
@article{10_4064_ap85_3_6,
author = {Shahar Nevo},
title = {Universal sequences for {Zalcman's} {
Lemma} and $Q_m$-normality},
journal = {Annales Polonici Mathematici},
pages = {251--260},
publisher = {mathdoc},
volume = {85},
number = {3},
year = {2005},
doi = {10.4064/ap85-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap85-3-6/}
}
Shahar Nevo. Universal sequences for Zalcman's Lemma and $Q_m$-normality. Annales Polonici Mathematici, Tome 85 (2005) no. 3, pp. 251-260. doi: 10.4064/ap85-3-6
Cité par Sources :