Universal sequences for Zalcman's Lemma and $Q_m$-normality
Annales Polonici Mathematici, Tome 85 (2005) no. 3, pp. 251-260.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of sequences $\{\varrho_n\}_{n=1}^\infty$, $\varrho_n\to 0^+$, and $\{z_n\}_{n=1}^\infty$, $|z_n|= {1}/{2}$, such that for every $\alpha \in\mathbb R$ and for every meromorphic function $G(z)$ on $\mathbb C$, there exists a meromorphic function $F(z)=F_{G,\alpha}(z)$ on $\mathbb C$ such that $\varrho_n^\alpha F(nz_n+n\varrho_n\zeta)$ %%\overset \chi\Rightarrow converges to $G(\zeta)$ uniformly on compact subsets of $\mathbb C$ in the spherical metric. As a result, we construct a family of functions meromorphic on the unit disk that is $Q_m$-normal for no $m\ge 1$ and on which an extension of Zalcman's Lemma holds.
DOI : 10.4064/ap85-3-6
Keywords: prove existence sequences varrho infty varrho infty every alpha mathbb every meromorphic function mathbb there exists meromorphic function alpha mathbb varrho alpha varrho zeta overset chi rightarrow converges zeta uniformly compact subsets mathbb spherical metric result construct family functions meromorphic unit disk m normal which extension zalcmans lemma holds

Shahar Nevo 1

1 Department of Mathematics Bar-Ilan University 52900 Ramat-Gan, Israel
@article{10_4064_ap85_3_6,
     author = {Shahar Nevo},
     title = {Universal sequences for {Zalcman's} {
Lemma} and $Q_m$-normality},
     journal = {Annales Polonici Mathematici},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2005},
     doi = {10.4064/ap85-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap85-3-6/}
}
TY  - JOUR
AU  - Shahar Nevo
TI  - Universal sequences for Zalcman's 
Lemma and $Q_m$-normality
JO  - Annales Polonici Mathematici
PY  - 2005
SP  - 251
EP  - 260
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap85-3-6/
DO  - 10.4064/ap85-3-6
LA  - en
ID  - 10_4064_ap85_3_6
ER  - 
%0 Journal Article
%A Shahar Nevo
%T Universal sequences for Zalcman's 
Lemma and $Q_m$-normality
%J Annales Polonici Mathematici
%D 2005
%P 251-260
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap85-3-6/
%R 10.4064/ap85-3-6
%G en
%F 10_4064_ap85_3_6
Shahar Nevo. Universal sequences for Zalcman's 
Lemma and $Q_m$-normality. Annales Polonici Mathematici, Tome 85 (2005) no. 3, pp. 251-260. doi : 10.4064/ap85-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap85-3-6/

Cité par Sources :