Criteria for univalence, starlikeness and convexity
Annales Polonici Mathematici, Tome 85 (2005) no. 2, pp. 121-133.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mathcal A}$ denote the class of all normalized analytic functions $f$ ($f(0)=0= f'(0)-1$) in the open unit disc $\mit\Delta$. For $0\lambda\leq 1$, define $${\mathcal U}(\lambda )=\bigg \{f\in {\mathcal A}: \bigg|\bigg(\frac{z}{f(z)}\bigg)^{2}f'(z)-1\bigg|\lambda, \, z\in {\mit\Delta} \bigg \} $$ and $$ {\mathcal P}(2\lambda )=\bigg \{f\in {\mathcal A}: \bigg|\bigg(\frac{z}{f(z)}\bigg)' '\bigg|2\lambda, \, z\in {\mit\Delta}\bigg \}. $$ Recently, the problem of finding the starlikeness of these classes has been considered by Obradović and Ponnusamy, and later by Obradović et al. In this paper, the authors consider the problem of finding the order of starlikeness and of convexity of ${\mathcal U}(\lambda )$ and ${\mathcal P}(2\lambda )$, respectively. In particular, for $f\in {\mathcal A}$ with $f' '(0)=0$, we find conditions on $\lambda$, $\beta^* (\lambda )$ and $\beta (\lambda )$ so that ${\mathcal U}(\lambda ) \subsetneq {\mathcal S}^*(\beta^* (\lambda ))$ and ${\mathcal P}(2\lambda )\subsetneq {\mathcal K}(\beta (\lambda ))$. Here, ${\mathcal S}^*(\beta)$ and ${\mathcal K}(\beta)$ ($\beta 1$) denote the classes of functions in ${\mathcal A}$ that are starlike of order $\beta$ and convex of order $\beta$, respectively. In addition to these results, we also provide a coefficient condition for functions to be in ${\mathcal K}(\beta)$. Finally, we propose a conjecture that each function $f\in {\mathcal U}(\lambda )$ with $f' '(0)=0$ is convex at least when $0\lambda\leq 3-2\sqrt{2}$.
DOI : 10.4064/ap85-2-2
Keywords: mathcal denote class normalized analytic functions unit disc mit delta lambda leq define mathcal lambda bigg mathcal bigg bigg frac bigg bigg lambda mit delta bigg mathcal lambda bigg mathcal bigg bigg frac bigg bigg lambda mit delta bigg recently problem finding starlikeness these classes has considered obradovi ponnusamy later obradovi paper authors consider problem finding order starlikeness convexity mathcal lambda mathcal lambda respectively particular mathcal conditions lambda beta * lambda beta lambda mathcal lambda subsetneq mathcal * beta * lambda mathcal lambda subsetneq mathcal beta lambda here mathcal * beta mathcal beta beta denote classes functions mathcal starlike order beta convex order beta respectively addition these results provide coefficient condition functions mathcal beta finally propose conjecture each function mathcal lambda convex least lambda leq sqrt

S. Ponnusamy 1 ; P. Vasundhra 2

1 Department of Mathematics Indian Institute of Technology IIT-Madras Chennai 600 036, India
2 Department of Mathematics Indian Institute of Technology IIT-Madras Chennai- 600 036, India
@article{10_4064_ap85_2_2,
     author = {S. Ponnusamy and P. Vasundhra},
     title = {Criteria for
univalence, starlikeness and convexity},
     journal = {Annales Polonici Mathematici},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2005},
     doi = {10.4064/ap85-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-2/}
}
TY  - JOUR
AU  - S. Ponnusamy
AU  - P. Vasundhra
TI  - Criteria for
univalence, starlikeness and convexity
JO  - Annales Polonici Mathematici
PY  - 2005
SP  - 121
EP  - 133
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-2/
DO  - 10.4064/ap85-2-2
LA  - en
ID  - 10_4064_ap85_2_2
ER  - 
%0 Journal Article
%A S. Ponnusamy
%A P. Vasundhra
%T Criteria for
univalence, starlikeness and convexity
%J Annales Polonici Mathematici
%D 2005
%P 121-133
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-2/
%R 10.4064/ap85-2-2
%G en
%F 10_4064_ap85_2_2
S. Ponnusamy; P. Vasundhra. Criteria for
univalence, starlikeness and convexity. Annales Polonici Mathematici, Tome 85 (2005) no. 2, pp. 121-133. doi : 10.4064/ap85-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-2/

Cité par Sources :