Criteria for
univalence, starlikeness and convexity
Annales Polonici Mathematici, Tome 85 (2005) no. 2, pp. 121-133
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathcal A}$ denote the class of all normalized analytic
functions $f$ ($f(0)=0= f'(0)-1$) in the open unit disc $\mit\Delta$.
For $0\lambda\leq 1$, define
$${\mathcal U}(\lambda )=\bigg \{f\in {\mathcal A}:
\bigg|\bigg(\frac{z}{f(z)}\bigg)^{2}f'(z)-1\bigg|\lambda, \,
z\in {\mit\Delta} \bigg \}
$$
and
$$
{\mathcal P}(2\lambda )=\bigg \{f\in {\mathcal A}:
\bigg|\bigg(\frac{z}{f(z)}\bigg)' '\bigg|2\lambda, \,
z\in {\mit\Delta}\bigg \}.
$$
Recently, the problem of finding the
starlikeness of these classes has been considered by Obradović
and Ponnusamy, and later by Obradović et al.
In this paper, the authors consider the problem of
finding the order of starlikeness and of convexity of ${\mathcal
U}(\lambda )$ and ${\mathcal P}(2\lambda )$, respectively. In
particular, for $f\in {\mathcal A}$ with $f' '(0)=0$, we find
conditions on $\lambda$, $\beta^* (\lambda )$ and $\beta (\lambda
)$ so that ${\mathcal U}(\lambda ) \subsetneq
{\mathcal
S}^*(\beta^* (\lambda ))$
and ${\mathcal P}(2\lambda )\subsetneq
{\mathcal K}(\beta (\lambda ))$.
Here, ${\mathcal
S}^*(\beta)$ and ${\mathcal K}(\beta)$ ($\beta 1$) denote the
classes of functions in ${\mathcal A}$ that are starlike of order
$\beta$ and convex of order $\beta$, respectively. In addition to
these results, we also provide a coefficient condition for functions
to be in ${\mathcal K}(\beta)$. Finally, we propose a conjecture that
each function $f\in {\mathcal U}(\lambda )$ with $f' '(0)=0$ is convex
at least when $0\lambda\leq 3-2\sqrt{2}$.
Keywords:
mathcal denote class normalized analytic functions unit disc mit delta lambda leq define mathcal lambda bigg mathcal bigg bigg frac bigg bigg lambda mit delta bigg mathcal lambda bigg mathcal bigg bigg frac bigg bigg lambda mit delta bigg recently problem finding starlikeness these classes has considered obradovi ponnusamy later obradovi paper authors consider problem finding order starlikeness convexity mathcal lambda mathcal lambda respectively particular mathcal conditions lambda beta * lambda beta lambda mathcal lambda subsetneq mathcal * beta * lambda mathcal lambda subsetneq mathcal beta lambda here mathcal * beta mathcal beta beta denote classes functions mathcal starlike order beta convex order beta respectively addition these results provide coefficient condition functions mathcal beta finally propose conjecture each function mathcal lambda convex least lambda leq sqrt
Affiliations des auteurs :
S. Ponnusamy 1 ; P. Vasundhra 2
@article{10_4064_ap85_2_2,
author = {S. Ponnusamy and P. Vasundhra},
title = {Criteria for
univalence, starlikeness and convexity},
journal = {Annales Polonici Mathematici},
pages = {121--133},
publisher = {mathdoc},
volume = {85},
number = {2},
year = {2005},
doi = {10.4064/ap85-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-2/}
}
TY - JOUR AU - S. Ponnusamy AU - P. Vasundhra TI - Criteria for univalence, starlikeness and convexity JO - Annales Polonici Mathematici PY - 2005 SP - 121 EP - 133 VL - 85 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-2/ DO - 10.4064/ap85-2-2 LA - en ID - 10_4064_ap85_2_2 ER -
S. Ponnusamy; P. Vasundhra. Criteria for univalence, starlikeness and convexity. Annales Polonici Mathematici, Tome 85 (2005) no. 2, pp. 121-133. doi: 10.4064/ap85-2-2
Cité par Sources :