Natural affinors on the $(r,s,q)$-cotangent bundle of a fibered manifold
Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 57-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For natural numbers $r,s,q,m,n$ with $s\geq r\leq q$ we describe all natural affinors on the $(r,s,q)$-cotangent bundle $T^{r,s,q*}Y$ over an $(m,n)$-dimensional fibered manifold $Y$.
DOI : 10.4064/ap83-1-7
Keywords: natural numbers m geq leq describe natural affinors cotangent bundle q* dimensional fibered manifold

J. Kurek 1 ; W. M. Mikulski 2

1 Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland
2 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ap83_1_7,
     author = {J. Kurek and W. M. Mikulski},
     title = {Natural affinors on the $(r,s,q)$-cotangent bundle
 of a fibered manifold},
     journal = {Annales Polonici Mathematici},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2004},
     doi = {10.4064/ap83-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-7/}
}
TY  - JOUR
AU  - J. Kurek
AU  - W. M. Mikulski
TI  - Natural affinors on the $(r,s,q)$-cotangent bundle
 of a fibered manifold
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 57
EP  - 64
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-7/
DO  - 10.4064/ap83-1-7
LA  - en
ID  - 10_4064_ap83_1_7
ER  - 
%0 Journal Article
%A J. Kurek
%A W. M. Mikulski
%T Natural affinors on the $(r,s,q)$-cotangent bundle
 of a fibered manifold
%J Annales Polonici Mathematici
%D 2004
%P 57-64
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-7/
%R 10.4064/ap83-1-7
%G en
%F 10_4064_ap83_1_7
J. Kurek; W. M. Mikulski. Natural affinors on the $(r,s,q)$-cotangent bundle
 of a fibered manifold. Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 57-64. doi : 10.4064/ap83-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-7/

Cité par Sources :