Regularity of certain sets in ${\Bbb C}^n$
Annales Polonici Mathematici, Tome 82 (2003) no. 3, pp. 219-232.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A subset $K$ of ${{\mathbb C}}^n$ is said to be regular in the sense of pluripotential theory if the pluricomplex Green function (or Siciak extremal function) $V_K$ is continuous in ${{\mathbb C}}^n$. We show that $K$ is regular if the intersections of $K$ with sufficiently many complex lines are regular (as subsets of ${{\mathbb C}}$). A complete characterization of regularity for Reinhardt sets is also given.
DOI : 10.4064/ap82-3-3
Keywords: subset mathbb said regular sense pluripotential theory pluricomplex green function siciak extremal function continuous mathbb regular intersections sufficiently many complex lines regular subsets mathbb complete characterization regularity reinhardt sets given

Nguyen Quang Dieu 1

1 Department of Mathematics University of Education of Hanoi (Dai Hoc Su Pham Hanoi) Cau Giay, Tu Liem, Hanoi, Vietnam
@article{10_4064_ap82_3_3,
     author = {Nguyen Quang Dieu},
     title = {Regularity of certain sets in ${\Bbb C}^n$},
     journal = {Annales Polonici Mathematici},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2003},
     doi = {10.4064/ap82-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-3-3/}
}
TY  - JOUR
AU  - Nguyen Quang Dieu
TI  - Regularity of certain sets in ${\Bbb C}^n$
JO  - Annales Polonici Mathematici
PY  - 2003
SP  - 219
EP  - 232
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap82-3-3/
DO  - 10.4064/ap82-3-3
LA  - en
ID  - 10_4064_ap82_3_3
ER  - 
%0 Journal Article
%A Nguyen Quang Dieu
%T Regularity of certain sets in ${\Bbb C}^n$
%J Annales Polonici Mathematici
%D 2003
%P 219-232
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap82-3-3/
%R 10.4064/ap82-3-3
%G en
%F 10_4064_ap82_3_3
Nguyen Quang Dieu. Regularity of certain sets in ${\Bbb C}^n$. Annales Polonici Mathematici, Tome 82 (2003) no. 3, pp. 219-232. doi : 10.4064/ap82-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ap82-3-3/

Cité par Sources :