Periodic solutions of $n$th order delay Rayleigh equations
Annales Polonici Mathematici, Tome 78 (2002) no. 3, pp. 261-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A priori bounds are established for periodic solutions of an $n$th order Rayleigh equation with delay. From these bounds, existence theorems for periodic solutions are established by means of Mawhin's continuation theorem.
DOI : 10.4064/ap78-3-4
Keywords: priori bounds established periodic solutions nth order rayleigh equation delay these bounds existence theorems periodic solutions established means mawhins continuation theorem

Gen-Qiang Wang 1 ; Sui Sun Cheng 2

1 Department of Computer Science Guangdong Polytechnical Normal University Guangzhou, Gaungdong 510665, P.R. China
2 Department of Mathematics Tsing Hua Univeristy Hsinchu, Taiwan 30043, R.O.C.
@article{10_4064_ap78_3_4,
     author = {Gen-Qiang Wang and Sui Sun Cheng},
     title = {Periodic solutions of $n$th order delay {Rayleigh} equations},
     journal = {Annales Polonici Mathematici},
     pages = {261--266},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2002},
     doi = {10.4064/ap78-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/}
}
TY  - JOUR
AU  - Gen-Qiang Wang
AU  - Sui Sun Cheng
TI  - Periodic solutions of $n$th order delay Rayleigh equations
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 261
EP  - 266
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/
DO  - 10.4064/ap78-3-4
LA  - en
ID  - 10_4064_ap78_3_4
ER  - 
%0 Journal Article
%A Gen-Qiang Wang
%A Sui Sun Cheng
%T Periodic solutions of $n$th order delay Rayleigh equations
%J Annales Polonici Mathematici
%D 2002
%P 261-266
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/
%R 10.4064/ap78-3-4
%G en
%F 10_4064_ap78_3_4
Gen-Qiang Wang; Sui Sun Cheng. Periodic solutions of $n$th order delay Rayleigh equations. Annales Polonici Mathematici, Tome 78 (2002) no. 3, pp. 261-266. doi : 10.4064/ap78-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/

Cité par Sources :