Periodic solutions of $n$th order delay Rayleigh equations
Annales Polonici Mathematici, Tome 78 (2002) no. 3, pp. 261-266
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A priori bounds are established for periodic solutions of an $n$th order Rayleigh equation with delay. From these bounds, existence theorems for periodic solutions are established by means of Mawhin's continuation theorem.
Keywords:
priori bounds established periodic solutions nth order rayleigh equation delay these bounds existence theorems periodic solutions established means mawhins continuation theorem
Affiliations des auteurs :
Gen-Qiang Wang 1 ; Sui Sun Cheng 2
@article{10_4064_ap78_3_4,
author = {Gen-Qiang Wang and Sui Sun Cheng},
title = {Periodic solutions of $n$th order delay {Rayleigh} equations},
journal = {Annales Polonici Mathematici},
pages = {261--266},
publisher = {mathdoc},
volume = {78},
number = {3},
year = {2002},
doi = {10.4064/ap78-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/}
}
TY - JOUR AU - Gen-Qiang Wang AU - Sui Sun Cheng TI - Periodic solutions of $n$th order delay Rayleigh equations JO - Annales Polonici Mathematici PY - 2002 SP - 261 EP - 266 VL - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/ DO - 10.4064/ap78-3-4 LA - en ID - 10_4064_ap78_3_4 ER -
Gen-Qiang Wang; Sui Sun Cheng. Periodic solutions of $n$th order delay Rayleigh equations. Annales Polonici Mathematici, Tome 78 (2002) no. 3, pp. 261-266. doi: 10.4064/ap78-3-4
Cité par Sources :