1Department of Computer Science Guangdong Polytechnical Normal University Guangzhou, Gaungdong 510665, P.R. China 2Department of Mathematics Tsing Hua Univeristy Hsinchu, Taiwan 30043, R.O.C.
Annales Polonici Mathematici, Tome 78 (2002) no. 3, pp. 261-266
A priori bounds are established for periodic solutions of an $n$th order Rayleigh equation with delay. From these bounds, existence theorems for periodic solutions are established by means of Mawhin's continuation theorem.
Keywords:
priori bounds established periodic solutions nth order rayleigh equation delay these bounds existence theorems periodic solutions established means mawhins continuation theorem
Affiliations des auteurs :
Gen-Qiang Wang 
1
;
Sui Sun Cheng 
2
1
Department of Computer Science Guangdong Polytechnical Normal University Guangzhou, Gaungdong 510665, P.R. China
2
Department of Mathematics Tsing Hua Univeristy Hsinchu, Taiwan 30043, R.O.C.
@article{10_4064_ap78_3_4,
author = {Gen-Qiang Wang and Sui Sun Cheng},
title = {Periodic solutions of $n$th order delay {Rayleigh} equations},
journal = {Annales Polonici Mathematici},
pages = {261--266},
year = {2002},
volume = {78},
number = {3},
doi = {10.4064/ap78-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/}
}
TY - JOUR
AU - Gen-Qiang Wang
AU - Sui Sun Cheng
TI - Periodic solutions of $n$th order delay Rayleigh equations
JO - Annales Polonici Mathematici
PY - 2002
SP - 261
EP - 266
VL - 78
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/
DO - 10.4064/ap78-3-4
LA - en
ID - 10_4064_ap78_3_4
ER -
%0 Journal Article
%A Gen-Qiang Wang
%A Sui Sun Cheng
%T Periodic solutions of $n$th order delay Rayleigh equations
%J Annales Polonici Mathematici
%D 2002
%P 261-266
%V 78
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-3-4/
%R 10.4064/ap78-3-4
%G en
%F 10_4064_ap78_3_4
Gen-Qiang Wang; Sui Sun Cheng. Periodic solutions of $n$th order delay Rayleigh equations. Annales Polonici Mathematici, Tome 78 (2002) no. 3, pp. 261-266. doi: 10.4064/ap78-3-4