The Dirichlet problem with sublinear nonlinearities
Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 131-140

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the existence of solutions of the Dirichlet problem for the differential inclusion $0\in {\mit\Delta} x(y)+\partial _{x}G(y,x(y))$ for a.e. $y\in {\mit\Omega} ,$ which is a generalized Euler–Lagrange equation for the functional $J(x)=\int_{\mit\Omega}\{\frac{1}{2}% |\nabla x(y)|^{2}-G(y,x(y))\}\,dy.$ We develop a duality theory and formulate the variational principle for this problem. As a consequence of duality, we derive the variational principle for minimizing sequences of $J$. We consider the case when $G$ is subquadratic at infinity.
DOI : 10.4064/ap78-2-4
Keywords: investigate existence solutions dirichlet problem differential inclusion mit delta partial x mit omega which generalized euler lagrange equation functional int mit omega frac nabla g develop duality theory formulate variational principle problem consequence duality derive variational principle minimizing sequences consider subquadratic infinity

Aleksandra Orpel 1

1 Faculty of Mathematics University of /L/od/x Banacha 22 90-238 /L/od/x, Poland
@article{10_4064_ap78_2_4,
     author = {Aleksandra Orpel},
     title = {The {Dirichlet} problem with sublinear nonlinearities},
     journal = {Annales Polonici Mathematici},
     pages = {131--140},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2002},
     doi = {10.4064/ap78-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-4/}
}
TY  - JOUR
AU  - Aleksandra Orpel
TI  - The Dirichlet problem with sublinear nonlinearities
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 131
EP  - 140
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-4/
DO  - 10.4064/ap78-2-4
LA  - en
ID  - 10_4064_ap78_2_4
ER  - 
%0 Journal Article
%A Aleksandra Orpel
%T The Dirichlet problem with sublinear nonlinearities
%J Annales Polonici Mathematici
%D 2002
%P 131-140
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-4/
%R 10.4064/ap78-2-4
%G en
%F 10_4064_ap78_2_4
Aleksandra Orpel. The Dirichlet problem with sublinear nonlinearities. Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 131-140. doi: 10.4064/ap78-2-4

Cité par Sources :