The Dirichlet problem with sublinear nonlinearities
Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 131-140
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the existence of solutions of the Dirichlet problem for the
differential inclusion $0\in {\mit\Delta} x(y)+\partial _{x}G(y,x(y))$
for a.e. $y\in {\mit\Omega} ,$ which is a generalized Euler–Lagrange equation for
the functional $J(x)=\int_{\mit\Omega}\{\frac{1}{2}%
|\nabla x(y)|^{2}-G(y,x(y))\}\,dy.$ We develop a duality theory and
formulate the variational principle for this problem. As a consequence of
duality, we derive the variational principle for minimizing sequences of $J$.
We consider the case when $G$ is subquadratic at infinity.
Keywords:
investigate existence solutions dirichlet problem differential inclusion mit delta partial x mit omega which generalized euler lagrange equation functional int mit omega frac nabla g develop duality theory formulate variational principle problem consequence duality derive variational principle minimizing sequences consider subquadratic infinity
Affiliations des auteurs :
Aleksandra Orpel 1
@article{10_4064_ap78_2_4,
author = {Aleksandra Orpel},
title = {The {Dirichlet} problem with sublinear nonlinearities},
journal = {Annales Polonici Mathematici},
pages = {131--140},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {2002},
doi = {10.4064/ap78-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-4/}
}
Aleksandra Orpel. The Dirichlet problem with sublinear nonlinearities. Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 131-140. doi: 10.4064/ap78-2-4
Cité par Sources :