The Dirichlet problem with sublinear nonlinearities
Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 131-140
We investigate the existence of solutions of the Dirichlet problem for the
differential inclusion $0\in {\mit\Delta} x(y)+\partial _{x}G(y,x(y))$
for a.e. $y\in {\mit\Omega} ,$ which is a generalized Euler–Lagrange equation for
the functional $J(x)=\int_{\mit\Omega}\{\frac{1}{2}%
|\nabla x(y)|^{2}-G(y,x(y))\}\,dy.$ We develop a duality theory and
formulate the variational principle for this problem. As a consequence of
duality, we derive the variational principle for minimizing sequences of $J$.
We consider the case when $G$ is subquadratic at infinity.
Keywords:
investigate existence solutions dirichlet problem differential inclusion mit delta partial x mit omega which generalized euler lagrange equation functional int mit omega frac nabla g develop duality theory formulate variational principle problem consequence duality derive variational principle minimizing sequences consider subquadratic infinity
Affiliations des auteurs :
Aleksandra Orpel  1
@article{10_4064_ap78_2_4,
author = {Aleksandra Orpel},
title = {The {Dirichlet} problem with sublinear nonlinearities},
journal = {Annales Polonici Mathematici},
pages = {131--140},
year = {2002},
volume = {78},
number = {2},
doi = {10.4064/ap78-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-4/}
}
Aleksandra Orpel. The Dirichlet problem with sublinear nonlinearities. Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 131-140. doi: 10.4064/ap78-2-4
Cité par Sources :