On approximation by Chebyshevian box splines
Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 111-121.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Chebyshevian box splines were introduced in [5]. The purpose of this paper is to show some new properties of them in the case when the weight functions $w_{j}$ are of the form $$ w_{j}(x)=W_{j}(v_{n+j}\cdot x), $$ where the functions $W_{j}$ are periodic functions of one variable. Then we consider the problem of approximation of continuous functions by Chebyshevian box splines.
DOI : 10.4064/ap78-2-2
Keywords: chebyshevian box splines introduced purpose paper properties weight functions form cdot where functions periodic functions variable consider problem approximation continuous functions chebyshevian box splines

Zygmunt Wronicz 1

1 Faculty of Applied Mathematics Academy of Mining and Metallurgy Al. Mickiewicza 30 30-059, Kraków, Poland
@article{10_4064_ap78_2_2,
     author = {Zygmunt Wronicz},
     title = {On approximation by {Chebyshevian} box splines},
     journal = {Annales Polonici Mathematici},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2002},
     doi = {10.4064/ap78-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-2/}
}
TY  - JOUR
AU  - Zygmunt Wronicz
TI  - On approximation by Chebyshevian box splines
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 111
EP  - 121
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-2/
DO  - 10.4064/ap78-2-2
LA  - en
ID  - 10_4064_ap78_2_2
ER  - 
%0 Journal Article
%A Zygmunt Wronicz
%T On approximation by Chebyshevian box splines
%J Annales Polonici Mathematici
%D 2002
%P 111-121
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-2/
%R 10.4064/ap78-2-2
%G en
%F 10_4064_ap78_2_2
Zygmunt Wronicz. On approximation by Chebyshevian box splines. Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 111-121. doi : 10.4064/ap78-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-2/

Cité par Sources :