Le grand théorème de Picard pour les
multifonctions analytiques finies
Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 189-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $D$ be a domain of the complex plane containing the
origin. The famous great theorem of Émile Picard
asserts that if $h$ is holomorphic on $D\setminus\{
0\} $, with an essential
singularity at 0, then the image under $h$ of any pointed
neighbourhood of 0 covers all the complex plane, with at most
one exception. Introducing the concept of essential singularity
for analytic multifunctions, we extend this theorem to a finite
analytic multifunction $K$, of degree $N$, defined on
$D\setminus\{ 0\}$.
In this case $\bigcup _{0 |\lambda | r}K (\lambda )$ covers all
the complex plane, with at most $2N-1$ exceptions. In
particular, this theorem can be used in the case of $N\times N$
matrices whose entries are holomorphic on $D\setminus \{
0\} $ with essential singularities
at 0. In this case, if their spectra avoid $2N$
points on a pointed neighbourhood of 0, these
spectra must be constant.
Mots-clés :
domain complex plane containing origin famous great theorem mile picard asserts holomorphic setminus essential singularity image under pointed neighbourhood covers complex plane exception introducing concept essential singularity analytic multifunctions extend theorem finite analytic multifunction degree defined setminus bigcup lambda lambda covers complex plane n exceptions particular theorem times matrices whose entries holomorphic setminus essential singularities their spectra avoid points pointed neighbourhood these spectra constant
Affiliations des auteurs :
Bernard Aupetit 1 ; Mustapha Ech-Chérif El Kettani 2
@article{10_4064_ap77_2_5,
author = {Bernard Aupetit and Mustapha Ech-Ch\'erif El Kettani},
title = {Le grand th\'eor\`eme de {Picard} pour les
multifonctions analytiques finies},
journal = {Annales Polonici Mathematici},
pages = {189--196},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {2001},
doi = {10.4064/ap77-2-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-5/}
}
TY - JOUR AU - Bernard Aupetit AU - Mustapha Ech-Chérif El Kettani TI - Le grand théorème de Picard pour les multifonctions analytiques finies JO - Annales Polonici Mathematici PY - 2001 SP - 189 EP - 196 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-5/ DO - 10.4064/ap77-2-5 LA - fr ID - 10_4064_ap77_2_5 ER -
%0 Journal Article %A Bernard Aupetit %A Mustapha Ech-Chérif El Kettani %T Le grand théorème de Picard pour les multifonctions analytiques finies %J Annales Polonici Mathematici %D 2001 %P 189-196 %V 77 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap77-2-5/ %R 10.4064/ap77-2-5 %G fr %F 10_4064_ap77_2_5
Bernard Aupetit; Mustapha Ech-Chérif El Kettani. Le grand théorème de Picard pour les multifonctions analytiques finies. Annales Polonici Mathematici, Tome 77 (2001) no. 2, pp. 189-196. doi: 10.4064/ap77-2-5
Cité par Sources :