Bifurcation in the solution set
of the von Kármán equations of an elastic disk
lying on an elastic foundation
Annales Polonici Mathematici, Tome 77 (2001) no. 1, pp. 53-68
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate bifurcation in the solution set of the von
Kármán equations on a disk ${\mit \Omega
}\subset {\mathbb R}^{2}$ with two positive parameters $\alpha $
and $\beta $. The equations describe the behaviour of an elastic
thin round plate lying on an elastic base under the action of a
compressing force. The method of analysis is based on reducing
the problem to an operator equation in real Banach spaces with a
nonlinear Fredholm map $F$ of index zero (to be defined later)\
that depends on the parameters $\alpha $ and $\beta $. Applying
the implicit function theorem we obtain the following necessary
condition for bifurcation: if $(0,p) $ is a bifurcation point
then $\mathop {\rm dim}\nolimits \mathop {\rm Ker}F_{x}^{\prime
}(0,p) >0$. Next, we give a full description of the kernel of
the Fréchet derivative of $F$. We study in detail the
situation when the dimension of the kernel is one. We prove that
$(0,p) $ is a bifurcation point by the use of the
Lyapunov–Schmidt finite-dimensional reduction and the
Crandall–Rabinowitz theorem. For a one-dimensional bifurcation
point, analysing the Lyapunov–Schmidt branching equation we
determine the number of families of solutions, their directions
and asymptotic behaviour (shapes).
Keywords:
investigate bifurcation solution set von equations disk mit omega subset mathbb positive parameters alpha beta equations describe behaviour elastic thin round plate lying elastic base under action compressing force method analysis based reducing problem operator equation real banach spaces nonlinear fredholm map index zero defined later depends parameters alpha beta applying implicit function theorem obtain following necessary condition bifurcation bifurcation point mathop dim nolimits mathop ker prime full description kernel chet derivative study detail situation dimension kernel prove bifurcation point lyapunov schmidt finite dimensional reduction crandall rabinowitz theorem one dimensional bifurcation point analysing lyapunov schmidt branching equation determine number families solutions their directions asymptotic behaviour shapes
Affiliations des auteurs :
Joanna Janczewska 1
@article{10_4064_ap77_1_5,
author = {Joanna Janczewska},
title = {Bifurcation in the solution set
of the von {K\'arm\'an} equations of an elastic disk
lying on an elastic foundation},
journal = {Annales Polonici Mathematici},
pages = {53--68},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2001},
doi = {10.4064/ap77-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-5/}
}
TY - JOUR AU - Joanna Janczewska TI - Bifurcation in the solution set of the von Kármán equations of an elastic disk lying on an elastic foundation JO - Annales Polonici Mathematici PY - 2001 SP - 53 EP - 68 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-5/ DO - 10.4064/ap77-1-5 LA - en ID - 10_4064_ap77_1_5 ER -
%0 Journal Article %A Joanna Janczewska %T Bifurcation in the solution set of the von Kármán equations of an elastic disk lying on an elastic foundation %J Annales Polonici Mathematici %D 2001 %P 53-68 %V 77 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap77-1-5/ %R 10.4064/ap77-1-5 %G en %F 10_4064_ap77_1_5
Joanna Janczewska. Bifurcation in the solution set of the von Kármán equations of an elastic disk lying on an elastic foundation. Annales Polonici Mathematici, Tome 77 (2001) no. 1, pp. 53-68. doi: 10.4064/ap77-1-5
Cité par Sources :