Complete noncompact submanifolds with flat normal bundle
Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 145-154
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $M^n$ $(n\geq 3)$ be an $n$-dimensional complete super stable minimal submanifold in $\mathbb {R}^{n+p}$ with flat normal bundle. We prove that if the second fundamental form $A$ of $M$ satisfies $\int _M|A|^\alpha \infty $, where $\alpha \in [2(1-\sqrt {2/n}), 2(1+\sqrt {2/n})]$, then $M$ is an affine $n$-dimensional plane. In particular, if $n\leq 8$ and $ \int _{M}|A|^d\infty $, $d=1,3,$ then $M$ is an affine $n$-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite $L^\alpha $-norm curvature in $\mathbb {R}^{7}$ are considered.
Keywords:
geq n dimensional complete super stable minimal submanifold mathbb flat normal bundle prove second fundamental form satisfies int alpha infty where alpha sqrt sqrt affine n dimensional plane particular leq int infty affine n dimensional plane moreover complete strongly stable hypersurfaces constant mean curvature finite alpha norm curvature mathbb considered
Affiliations des auteurs :
Hai-Ping Fu 1
@article{10_4064_ap3743_12_2015,
author = {Hai-Ping Fu},
title = {Complete noncompact submanifolds with flat normal bundle},
journal = {Annales Polonici Mathematici},
pages = {145--154},
year = {2016},
volume = {116},
number = {2},
doi = {10.4064/ap3743-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3743-12-2015/}
}
TY - JOUR AU - Hai-Ping Fu TI - Complete noncompact submanifolds with flat normal bundle JO - Annales Polonici Mathematici PY - 2016 SP - 145 EP - 154 VL - 116 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap3743-12-2015/ DO - 10.4064/ap3743-12-2015 LA - en ID - 10_4064_ap3743_12_2015 ER -
Hai-Ping Fu. Complete noncompact submanifolds with flat normal bundle. Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 145-154. doi: 10.4064/ap3743-12-2015
Cité par Sources :