Complete noncompact submanifolds with flat normal bundle
Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 145-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M^n$ $(n\geq 3)$ be an $n$-dimensional complete super stable minimal submanifold in $\mathbb {R}^{n+p}$ with flat normal bundle. We prove that if the second fundamental form $A$ of $M$ satisfies $\int _M|A|^\alpha \infty $, where $\alpha \in [2(1-\sqrt {2/n}), 2(1+\sqrt {2/n})]$, then $M$ is an affine $n$-dimensional plane. In particular, if $n\leq 8$ and $ \int _{M}|A|^d\infty $, $d=1,3,$ then $M$ is an affine $n$-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite $L^\alpha $-norm curvature in $\mathbb {R}^{7}$ are considered.
DOI : 10.4064/ap3743-12-2015
Keywords: geq n dimensional complete super stable minimal submanifold mathbb flat normal bundle prove second fundamental form satisfies int alpha infty where alpha sqrt sqrt affine n dimensional plane particular leq int infty affine n dimensional plane moreover complete strongly stable hypersurfaces constant mean curvature finite alpha norm curvature mathbb considered

Hai-Ping Fu 1

1 Department of Mathematics Nanchang University 330031 Nanchang, P.R. China
@article{10_4064_ap3743_12_2015,
     author = {Hai-Ping Fu},
     title = {Complete noncompact submanifolds with flat normal bundle},
     journal = {Annales Polonici Mathematici},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2016},
     doi = {10.4064/ap3743-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap3743-12-2015/}
}
TY  - JOUR
AU  - Hai-Ping Fu
TI  - Complete noncompact submanifolds with flat normal bundle
JO  - Annales Polonici Mathematici
PY  - 2016
SP  - 145
EP  - 154
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap3743-12-2015/
DO  - 10.4064/ap3743-12-2015
LA  - en
ID  - 10_4064_ap3743_12_2015
ER  - 
%0 Journal Article
%A Hai-Ping Fu
%T Complete noncompact submanifolds with flat normal bundle
%J Annales Polonici Mathematici
%D 2016
%P 145-154
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap3743-12-2015/
%R 10.4064/ap3743-12-2015
%G en
%F 10_4064_ap3743_12_2015
Hai-Ping Fu. Complete noncompact submanifolds with flat normal bundle. Annales Polonici Mathematici, Tome 116 (2016) no. 2, pp. 145-154. doi : 10.4064/ap3743-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/ap3743-12-2015/

Cité par Sources :