An identity for formal derivatives in a commutative algebra
Annales Polonici Mathematici, Tome 119 (2017) no. 3, pp. 195-202
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present a generalization of an identity for formal derivatives in a commutative algebra. Special cases of the formula play a key role in deriving Markov type inequalities. In addition we give a short proof of the specialization to ordinary higher order derivatives and list some of its applications.
Keywords:
present generalization identity formal derivatives commutative algebra special cases formula play key role deriving markov type inequalities addition short proof specialization ordinary higher order derivatives list its applications
Affiliations des auteurs :
Ulrich Abel 1
@article{10_4064_ap170324_11_9,
author = {Ulrich Abel},
title = {An identity for formal derivatives in a commutative algebra},
journal = {Annales Polonici Mathematici},
pages = {195--202},
year = {2017},
volume = {119},
number = {3},
doi = {10.4064/ap170324-11-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap170324-11-9/}
}
TY - JOUR AU - Ulrich Abel TI - An identity for formal derivatives in a commutative algebra JO - Annales Polonici Mathematici PY - 2017 SP - 195 EP - 202 VL - 119 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap170324-11-9/ DO - 10.4064/ap170324-11-9 LA - en ID - 10_4064_ap170324_11_9 ER -
Ulrich Abel. An identity for formal derivatives in a commutative algebra. Annales Polonici Mathematici, Tome 119 (2017) no. 3, pp. 195-202. doi: 10.4064/ap170324-11-9
Cité par Sources :