An identity for formal derivatives in a commutative algebra
Annales Polonici Mathematici, Tome 119 (2017) no. 3, pp. 195-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a generalization of an identity for formal derivatives in a commutative algebra. Special cases of the formula play a key role in deriving Markov type inequalities. In addition we give a short proof of the specialization to ordinary higher order derivatives and list some of its applications.
DOI : 10.4064/ap170324-11-9
Keywords: present generalization identity formal derivatives commutative algebra special cases formula play key role deriving markov type inequalities addition short proof specialization ordinary higher order derivatives list its applications

Ulrich Abel 1

1 Department MND Technische Hochschule Mittelhessen Wilhelm-Leuschner-Straße 13 61169 Friedberg, Germany
@article{10_4064_ap170324_11_9,
     author = {Ulrich Abel},
     title = {An identity for formal derivatives in a commutative algebra},
     journal = {Annales Polonici Mathematici},
     pages = {195--202},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {2017},
     doi = {10.4064/ap170324-11-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap170324-11-9/}
}
TY  - JOUR
AU  - Ulrich Abel
TI  - An identity for formal derivatives in a commutative algebra
JO  - Annales Polonici Mathematici
PY  - 2017
SP  - 195
EP  - 202
VL  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap170324-11-9/
DO  - 10.4064/ap170324-11-9
LA  - en
ID  - 10_4064_ap170324_11_9
ER  - 
%0 Journal Article
%A Ulrich Abel
%T An identity for formal derivatives in a commutative algebra
%J Annales Polonici Mathematici
%D 2017
%P 195-202
%V 119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap170324-11-9/
%R 10.4064/ap170324-11-9
%G en
%F 10_4064_ap170324_11_9
Ulrich Abel. An identity for formal derivatives in a commutative algebra. Annales Polonici Mathematici, Tome 119 (2017) no. 3, pp. 195-202. doi : 10.4064/ap170324-11-9. http://geodesic.mathdoc.fr/articles/10.4064/ap170324-11-9/

Cité par Sources :