Copolar convexity
Annales Polonici Mathematici, Tome 120 (2017) no. 1, pp. 83-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a new operation, copolar addition, on unbounded convex subsets of the positive orthant of ${\mathbb R}^n$ and establish convexity of the covolumes of the corresponding convex combinations. The proof is based on a technique of geodesics of plurisubharmonic functions. As an application, we show that there are no relative extremal functions inside a nonconstant geodesic curve between two toric relative extremal functions.
DOI : 10.4064/ap170217-4-9
Keywords: introduce operation copolar addition unbounded convex subsets positive orthant mathbb establish convexity covolumes corresponding convex combinations proof based technique geodesics plurisubharmonic functions application there relative extremal functions inside nonconstant geodesic curve between toric relative extremal functions

Alexander Rashkovskii 1

1 Tek/Nat University of Stavanger 4036 Stavanger, Norway
@article{10_4064_ap170217_4_9,
     author = {Alexander Rashkovskii},
     title = {Copolar convexity},
     journal = {Annales Polonici Mathematici},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {2017},
     doi = {10.4064/ap170217-4-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap170217-4-9/}
}
TY  - JOUR
AU  - Alexander Rashkovskii
TI  - Copolar convexity
JO  - Annales Polonici Mathematici
PY  - 2017
SP  - 83
EP  - 95
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap170217-4-9/
DO  - 10.4064/ap170217-4-9
LA  - en
ID  - 10_4064_ap170217_4_9
ER  - 
%0 Journal Article
%A Alexander Rashkovskii
%T Copolar convexity
%J Annales Polonici Mathematici
%D 2017
%P 83-95
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap170217-4-9/
%R 10.4064/ap170217-4-9
%G en
%F 10_4064_ap170217_4_9
Alexander Rashkovskii. Copolar convexity. Annales Polonici Mathematici, Tome 120 (2017) no. 1, pp. 83-95. doi : 10.4064/ap170217-4-9. http://geodesic.mathdoc.fr/articles/10.4064/ap170217-4-9/

Cité par Sources :