On the lattice of polynomials with integer coefficients: the covering radius in $L_p(0,1)$
Annales Polonici Mathematici, Tome 115 (2015) no. 2, pp. 123-144.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper deals with the approximation by polynomials with integer coefficients in $L_p(0,1)$, $1\le p\le \infty $. Let $\boldsymbol {P}_{n,r}$ be the space of polynomials of degree $\le n$ which are divisible by the polynomial $x^r(1-x)^r$, $r\ge 0$, and let $\boldsymbol {P}_{n,r}^\mathbb {Z}\subset \boldsymbol {P}_{n,r}$ be the set of polynomials with integer coefficients. Let $\mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_p)$ be the maximal distance of elements of $\boldsymbol {P}_{n,r}$ from $\boldsymbol {P}_{n,r}^\mathbb {Z}$ in $L_p(0,1)$. We give rather precise quantitative estimates of $\mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_2)$ for $n\gtrsim 6r$. Then we obtain similar, somewhat less precise, estimates of $\mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_p)$ for $p\not =2$. It follows that $\mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_p)\asymp n^{-2r-2/p}$ as $n\to \infty $. The results partially improve those of Trigub [Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962)].
DOI : 10.4064/ap115-2-2
Keywords: paper deals approximation polynomials integer coefficients infty boldsymbol space polynomials degree which divisible polynomial x boldsymbol mathbb subset boldsymbol set polynomials integer coefficients boldsymbol mathbb maximal distance elements boldsymbol boldsymbol mathbb rather precise quantitative estimates boldsymbol mathbb gtrsim obtain similar somewhat precise estimates boldsymbol mathbb follows boldsymbol mathbb asymp r infty results partially improve those trigub izv akad nauk sssr ser mat

Wojciech Banaszczyk 1 ; Artur Lipnicki 1

1 Faculty of Mathematics and Computer Science University of Łódź 90-238 Łódź, Poland
@article{10_4064_ap115_2_2,
     author = {Wojciech Banaszczyk and Artur Lipnicki},
     title = {On the lattice of polynomials with integer coefficients: the covering radius in $L_p(0,1)$},
     journal = {Annales Polonici Mathematici},
     pages = {123--144},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2015},
     doi = {10.4064/ap115-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap115-2-2/}
}
TY  - JOUR
AU  - Wojciech Banaszczyk
AU  - Artur Lipnicki
TI  - On the lattice of polynomials with integer coefficients: the covering radius in $L_p(0,1)$
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 123
EP  - 144
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap115-2-2/
DO  - 10.4064/ap115-2-2
LA  - en
ID  - 10_4064_ap115_2_2
ER  - 
%0 Journal Article
%A Wojciech Banaszczyk
%A Artur Lipnicki
%T On the lattice of polynomials with integer coefficients: the covering radius in $L_p(0,1)$
%J Annales Polonici Mathematici
%D 2015
%P 123-144
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap115-2-2/
%R 10.4064/ap115-2-2
%G en
%F 10_4064_ap115_2_2
Wojciech Banaszczyk; Artur Lipnicki. On the lattice of polynomials with integer coefficients: the covering radius in $L_p(0,1)$. Annales Polonici Mathematici, Tome 115 (2015) no. 2, pp. 123-144. doi : 10.4064/ap115-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap115-2-2/

Cité par Sources :