Generalized $m$-quasi-Einstein metric within
the framework of Sasakian and $K$-contact manifolds
Annales Polonici Mathematici, Tome 115 (2015) no. 1, pp. 33-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider generalized $m$-quasi-Einstein metric within the framework of Sasakian and $K$-contact manifolds. First, we prove that a complete Sasakian manifold $M$ admitting a generalized $m$-quasi-Einstein metric is compact and isometric to the unit sphere $S^{2n+1}$. Next, we generalize this to complete $K$-contact manifolds with $m \not =1$.
Keywords:
consider generalized m quasi einstein metric within framework sasakian k contact manifolds first prove complete sasakian manifold admitting generalized m quasi einstein metric compact isometric unit sphere generalize complete k contact manifolds
Affiliations des auteurs :
Amalendu Ghosh 1
@article{10_4064_ap115_1_3,
author = {Amalendu Ghosh},
title = {Generalized $m${-quasi-Einstein} metric within
the framework of {Sasakian} and $K$-contact manifolds},
journal = {Annales Polonici Mathematici},
pages = {33--41},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {2015},
doi = {10.4064/ap115-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-3/}
}
TY - JOUR AU - Amalendu Ghosh TI - Generalized $m$-quasi-Einstein metric within the framework of Sasakian and $K$-contact manifolds JO - Annales Polonici Mathematici PY - 2015 SP - 33 EP - 41 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-3/ DO - 10.4064/ap115-1-3 LA - en ID - 10_4064_ap115_1_3 ER -
%0 Journal Article %A Amalendu Ghosh %T Generalized $m$-quasi-Einstein metric within the framework of Sasakian and $K$-contact manifolds %J Annales Polonici Mathematici %D 2015 %P 33-41 %V 115 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap115-1-3/ %R 10.4064/ap115-1-3 %G en %F 10_4064_ap115_1_3
Amalendu Ghosh. Generalized $m$-quasi-Einstein metric within the framework of Sasakian and $K$-contact manifolds. Annales Polonici Mathematici, Tome 115 (2015) no. 1, pp. 33-41. doi: 10.4064/ap115-1-3
Cité par Sources :