Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions
Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 295-304
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\sigma $ denote the class of bi-univalent functions $f$, that is, both $f(z)=z+a_2z^2+\cdots $ and its inverse $f^{-1}$ are analytic and univalent on the unit disk. We consider the classes of strongly bi-close-to-convex functions of order $\alpha $ and of bi-close-to-convex functions of order $\beta $, which turn out to be subclasses of $\sigma .$ We obtain upper bounds for $|a_2|$ and $|a_3|$ for those classes. Moreover, we verify Brannan and Clunie's conjecture $|a_2|\leq \sqrt {2}$ for some of our classes. In addition, we obtain the Fekete–Szegö relation for these classes.
Keywords:
sigma denote class bi univalent functions cdots its inverse analytic univalent unit disk consider classes strongly bi close to convex functions order alpha bi close to convex functions order beta which turn out subclasses sigma obtain upper bounds those classes moreover verify brannan clunies conjecture leq sqrt classes addition obtain fekete szeg relation these classes
Affiliations des auteurs :
S. Sivasubramanian 1 ; R. Sivakumar 1 ; S. Kanas 2 ; Seong-A Kim 3
@article{10_4064_ap113_3_6,
author = {S. Sivasubramanian and R. Sivakumar and S. Kanas and Seong-A Kim},
title = {Verification of {Brannan} and {Clunie's} conjecture for certain subclasses of bi-univalent functions},
journal = {Annales Polonici Mathematici},
pages = {295--304},
publisher = {mathdoc},
volume = {113},
number = {3},
year = {2015},
doi = {10.4064/ap113-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/}
}
TY - JOUR AU - S. Sivasubramanian AU - R. Sivakumar AU - S. Kanas AU - Seong-A Kim TI - Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions JO - Annales Polonici Mathematici PY - 2015 SP - 295 EP - 304 VL - 113 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/ DO - 10.4064/ap113-3-6 LA - en ID - 10_4064_ap113_3_6 ER -
%0 Journal Article %A S. Sivasubramanian %A R. Sivakumar %A S. Kanas %A Seong-A Kim %T Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions %J Annales Polonici Mathematici %D 2015 %P 295-304 %V 113 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/ %R 10.4064/ap113-3-6 %G en %F 10_4064_ap113_3_6
S. Sivasubramanian; R. Sivakumar; S. Kanas; Seong-A Kim. Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions. Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 295-304. doi: 10.4064/ap113-3-6
Cité par Sources :