Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions
Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 295-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\sigma $ denote the class of bi-univalent functions $f$, that is, both $f(z)=z+a_2z^2+\cdots $ and its inverse $f^{-1}$ are analytic and univalent on the unit disk. We consider the classes of strongly bi-close-to-convex functions of order $\alpha $ and of bi-close-to-convex functions of order $\beta $, which turn out to be subclasses of $\sigma .$ We obtain upper bounds for $|a_2|$ and $|a_3|$ for those classes. Moreover, we verify Brannan and Clunie's conjecture $|a_2|\leq \sqrt {2}$ for some of our classes. In addition, we obtain the Fekete–Szegö relation for these classes.
DOI : 10.4064/ap113-3-6
Keywords: sigma denote class bi univalent functions cdots its inverse analytic univalent unit disk consider classes strongly bi close to convex functions order alpha bi close to convex functions order beta which turn out subclasses sigma obtain upper bounds those classes moreover verify brannan clunies conjecture leq sqrt classes addition obtain fekete szeg relation these classes

S. Sivasubramanian 1 ; R. Sivakumar 1 ; S. Kanas 2 ; Seong-A Kim 3

1 Department of Mathematics University College of Engineering Tindivanam Anna University Tindivanam, India
2 Institute of Mathematics University of Rzeszów Rzeszów, Poland
3 Department of Mathematics Education Dongguk University Gyeongju, Korea
@article{10_4064_ap113_3_6,
     author = {S. Sivasubramanian and R. Sivakumar and S. Kanas and Seong-A Kim},
     title = {Verification of {Brannan} and {Clunie's} conjecture for certain subclasses of bi-univalent functions},
     journal = {Annales Polonici Mathematici},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2015},
     doi = {10.4064/ap113-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/}
}
TY  - JOUR
AU  - S. Sivasubramanian
AU  - R. Sivakumar
AU  - S. Kanas
AU  - Seong-A Kim
TI  - Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 295
EP  - 304
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/
DO  - 10.4064/ap113-3-6
LA  - en
ID  - 10_4064_ap113_3_6
ER  - 
%0 Journal Article
%A S. Sivasubramanian
%A R. Sivakumar
%A S. Kanas
%A Seong-A Kim
%T Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions
%J Annales Polonici Mathematici
%D 2015
%P 295-304
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/
%R 10.4064/ap113-3-6
%G en
%F 10_4064_ap113_3_6
S. Sivasubramanian; R. Sivakumar; S. Kanas; Seong-A Kim. Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions. Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 295-304. doi : 10.4064/ap113-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-6/

Cité par Sources :