Separately superharmonic functions in product networks
Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 209-241.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X\times Y$ be the Cartesian product of two locally finite, connected networks that need not have reversible conductance. If $X,Y$ represent random walks, it is known that if $X\times Y$ is recurrent, then $X,Y$ are both recurrent. This fact is proved here by non-probabilistic methods, by using the properties of separately superharmonic functions. For this class of functions on the product network $X\times Y$, the Dirichlet solution, balayage, minimum principle etc. are obtained. A unique integral representation is given for any function that belongs to a restricted subclass of positive separately superharmonic functions in $X\times Y$.
DOI : 10.4064/ap113-3-1
Keywords: times cartesian product locally finite connected networks have reversible conductance represent random walks known times recurrent recurrent proved here non probabilistic methods using properties separately superharmonic functions class functions product network times dirichlet solution balayage minimum principle etc obtained unique integral representation given function belongs restricted subclass positive separately superharmonic functions times

Victor Anandam 1

1 Institute of Mathematical Sciences Chennai, Tamil Nadu, India 600 113
@article{10_4064_ap113_3_1,
     author = {Victor Anandam},
     title = {Separately superharmonic functions in product networks},
     journal = {Annales Polonici Mathematici},
     pages = {209--241},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2015},
     doi = {10.4064/ap113-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-1/}
}
TY  - JOUR
AU  - Victor Anandam
TI  - Separately superharmonic functions in product networks
JO  - Annales Polonici Mathematici
PY  - 2015
SP  - 209
EP  - 241
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-1/
DO  - 10.4064/ap113-3-1
LA  - en
ID  - 10_4064_ap113_3_1
ER  - 
%0 Journal Article
%A Victor Anandam
%T Separately superharmonic functions in product networks
%J Annales Polonici Mathematici
%D 2015
%P 209-241
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-1/
%R 10.4064/ap113-3-1
%G en
%F 10_4064_ap113_3_1
Victor Anandam. Separately superharmonic functions in product networks. Annales Polonici Mathematici, Tome 113 (2015) no. 3, pp. 209-241. doi : 10.4064/ap113-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ap113-3-1/

Cité par Sources :