Internal characteristics of domains in $\mathbb {C}^{n}$
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 215-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper is devoted to internal capacity characteristics of a domain $D\subset \mathbb{C}^{n}$, relative to a point $a\in D$, which have their origin in the notion of the conformal radius of a simply connected plane domain relative to a point. Our main goal is to study the internal Chebyshev constants and transfinite diameters for a domain $D\subset \mathbb{C}^{n}$ and its boundary $\partial D$ relative to a point $a\in D$ in the spirit of the author's article [Math. USSR-Sb. 25 (1975), 350–364], where similar characteristics have been investigated for compact sets in $\mathbb{C}^{n}$. The central notion of directional Chebyshev constants is based on the asymptotic behavior of extremal monic “polynomials” and “copolynomials” in directions determined by the arithmetic of the index set $\mathbb{Z}^{n}$. Some results are closely related to results on the $s$th Reiffen pseudometrics and internal directional analytic capacities of higher order (Jarnicki–Pflug, Nivoche) describing the asymptotic behavior of extremal “copolynomials” in varied directions when approaching the point $a$.
DOI : 10.4064/ap111-3-1
Keywords: paper devoted internal capacity characteristics domain subset mathbb relative point which have their origin notion conformal radius simply connected plane domain relative point main study internal chebyshev constants transfinite diameters domain subset mathbb its boundary partial relative point spirit authors article math ussr sb where similar characteristics have investigated compact sets mathbb central notion directional chebyshev constants based asymptotic behavior extremal monic polynomials copolynomials directions determined arithmetic index set mathbb results closely related results sth reiffen pseudometrics internal directional analytic capacities higher order jarnicki pflug nivoche describing asymptotic behavior extremal copolynomials varied directions approaching point

Vyacheslav Zakharyuta 1

1 Sabancı University 34956 Tuzla/İstanbul, Turkey
@article{10_4064_ap111_3_1,
     author = {Vyacheslav Zakharyuta},
     title = {Internal characteristics of domains in $\mathbb {C}^{n}$},
     journal = {Annales Polonici Mathematici},
     pages = {215--236},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2014},
     doi = {10.4064/ap111-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-1/}
}
TY  - JOUR
AU  - Vyacheslav Zakharyuta
TI  - Internal characteristics of domains in $\mathbb {C}^{n}$
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 215
EP  - 236
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-1/
DO  - 10.4064/ap111-3-1
LA  - en
ID  - 10_4064_ap111_3_1
ER  - 
%0 Journal Article
%A Vyacheslav Zakharyuta
%T Internal characteristics of domains in $\mathbb {C}^{n}$
%J Annales Polonici Mathematici
%D 2014
%P 215-236
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-1/
%R 10.4064/ap111-3-1
%G en
%F 10_4064_ap111_3_1
Vyacheslav Zakharyuta. Internal characteristics of domains in $\mathbb {C}^{n}$. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 215-236. doi : 10.4064/ap111-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-1/

Cité par Sources :