Canonical Poisson–Nijenhuis structures on higher order tangent bundles
Annales Polonici Mathematici, Tome 111 (2014) no. 1, pp. 21-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M$ be a smooth manifold of dimension $m>0$, and denote by $S_{\rm can}$ the canonical Nijenhuis tensor on $TM$. Let $\varPi $ be a Poisson bivector on $M$ and $\varPi ^{T}$ the complete lift of $\varPi $ on $TM$. In a previous paper, we have shown that $(TM, \varPi ^{T}, S_{\rm can})$ is a Poisson–Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from $M$ to $T^rM$ have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on $T^{A}M$ are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002), 243–257], where $A$ is a Weil algebra. In the particular case where $A= J^{r}_{0}(\mathbb {R}, \mathbb {R})\simeq \mathbb {R}^{r+1}$ with the canonical basis $(e_{\alpha })$, we obtain for each $0\leq \alpha \leq r$ the canonical Nijenhuis tensor $S_{\alpha }$ on $T^{r}M$ defined by the vector $e_{\alpha }$. The tensor $S_{\alpha }$ is called the canonical Nijenhuis tensor on $T^{r}M$ of degree $\alpha $. In this paper, we show that if $(M, \varPi )$ is a Poisson manifold, then for each $\alpha $ with $1\leq \alpha \leq r$, $(T^{r}M, \varPi ^{(c)}, S_{\alpha })$ is a Poisson–Nijenhuis manifold. In particular, we describe other prolongations of Poisson manifolds from $M$ to $T^{r}M$ and we give some of their properties.
DOI : 10.4064/ap111-1-3
Keywords: smooth manifold dimension denote canonical nijenhuis tensor varpi poisson bivector varpi complete lift varpi previous paper have shown varpi poisson nijenhuis manifold recently higher order tangent lifts poisson manifolds have studied properties given furthermore canonical nijenhuis tensors described cabras kol arch math brno where weil algebra particular where mathbb mathbb simeq mathbb canonical basis alpha obtain each leq alpha leq canonical nijenhuis tensor alpha defined vector alpha tensor alpha called canonical nijenhuis tensor degree alpha paper varpi poisson manifold each alpha leq alpha leq varpi alpha poisson nijenhuis manifold particular describe other prolongations poisson manifolds their properties

P. M. Kouotchop Wamba 1

1 Department of Mathematics University of Yaoundé 1 PO Box 812 Yaoundé, Cameroon
@article{10_4064_ap111_1_3,
     author = {P. M. Kouotchop Wamba},
     title = {Canonical {Poisson{\textendash}Nijenhuis} structures on
 higher order tangent bundles},
     journal = {Annales Polonici Mathematici},
     pages = {21--37},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2014},
     doi = {10.4064/ap111-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-3/}
}
TY  - JOUR
AU  - P. M. Kouotchop Wamba
TI  - Canonical Poisson–Nijenhuis structures on
 higher order tangent bundles
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 21
EP  - 37
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-3/
DO  - 10.4064/ap111-1-3
LA  - en
ID  - 10_4064_ap111_1_3
ER  - 
%0 Journal Article
%A P. M. Kouotchop Wamba
%T Canonical Poisson–Nijenhuis structures on
 higher order tangent bundles
%J Annales Polonici Mathematici
%D 2014
%P 21-37
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-3/
%R 10.4064/ap111-1-3
%G en
%F 10_4064_ap111_1_3
P. M. Kouotchop Wamba. Canonical Poisson–Nijenhuis structures on
 higher order tangent bundles. Annales Polonici Mathematici, Tome 111 (2014) no. 1, pp. 21-37. doi : 10.4064/ap111-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-3/

Cité par Sources :