Partial integrability on Thurston manifolds
Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 261-269
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We determine the maximal number of independent holomorphic functions on the Thurston manifolds $M^{2r+2}$, $r\geq 1$, which are the first discovered compact non-Kähler almost Kähler manifolds. We follow the method which involves analyzing the torsion tensor $d\theta \ {\rm mod}\,\theta $, where $\theta =(\theta ^1,\ldots ,\theta ^{r+1})$ are independent $(1,0)$-forms.
Keywords:
determine maximal number independent holomorphic functions thurston manifolds geq which first discovered compact non k hler almost hler manifolds follow method which involves analyzing torsion tensor theta mod theta where theta theta ldots theta independent forms
Affiliations des auteurs :
Hyeseon Kim 1
@article{10_4064_ap109_3_2,
author = {Hyeseon Kim},
title = {Partial integrability on {Thurston} manifolds},
journal = {Annales Polonici Mathematici},
pages = {261--269},
year = {2013},
volume = {109},
number = {3},
doi = {10.4064/ap109-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-2/}
}
Hyeseon Kim. Partial integrability on Thurston manifolds. Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 261-269. doi: 10.4064/ap109-3-2
Cité par Sources :