Partial integrability on Thurston manifolds
Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 261-269.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the maximal number of independent holomorphic functions on the Thurston manifolds $M^{2r+2}$, $r\geq 1$, which are the first discovered compact non-Kähler almost Kähler manifolds. We follow the method which involves analyzing the torsion tensor $d\theta \ {\rm mod}\,\theta $, where $\theta =(\theta ^1,\ldots ,\theta ^{r+1})$ are independent $(1,0)$-forms.
DOI : 10.4064/ap109-3-2
Keywords: determine maximal number independent holomorphic functions thurston manifolds geq which first discovered compact non k hler almost hler manifolds follow method which involves analyzing torsion tensor theta mod theta where theta theta ldots theta independent forms

Hyeseon Kim 1

1 The Center for Geometry and its Applications Pohang University of Science and Technology Pohang 790-784, Republic of Korea
@article{10_4064_ap109_3_2,
     author = {Hyeseon Kim},
     title = {Partial integrability on {Thurston} manifolds},
     journal = {Annales Polonici Mathematici},
     pages = {261--269},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2013},
     doi = {10.4064/ap109-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-2/}
}
TY  - JOUR
AU  - Hyeseon Kim
TI  - Partial integrability on Thurston manifolds
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 261
EP  - 269
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-2/
DO  - 10.4064/ap109-3-2
LA  - en
ID  - 10_4064_ap109_3_2
ER  - 
%0 Journal Article
%A Hyeseon Kim
%T Partial integrability on Thurston manifolds
%J Annales Polonici Mathematici
%D 2013
%P 261-269
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-2/
%R 10.4064/ap109-3-2
%G en
%F 10_4064_ap109_3_2
Hyeseon Kim. Partial integrability on Thurston manifolds. Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 261-269. doi : 10.4064/ap109-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-2/

Cité par Sources :