Hermitian $(a,b)$-modules and Saito's “higher residue pairings”
Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 241-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Following the work of Daniel Barlet [Pitman Res. Notes Math. Ser. 366 (1997), 19–59] and Ridha Belgrade [J. Algebra 245 (2001), 193–224], the aim of this article is to study the existence of $(a,b)$-hermitian forms on regular $(a,b)$-modules. We show that every regular $(a,b)$-module $E$ with a non-degenerate bilinear form can be written in a unique way as a direct sum of $(a,b)$-modules $E_i$ that admit either an $(a,b)$-hermitian or an $(a,b)$-anti-hermitian form or both; all three cases are possible, and we give explicit examples. As an application we extend the result of Ridha Belgrade on the existence, for all $(a,b)$-modules $E$ associated with the Brieskorn module of a holomorphic function with an isolated singularity, of an $(a,b)$-bilinear non-degenerate form on $E$. We show that with a small transformation Belgrade's form can be considered $(a,b)$-hermitian and that the result satisfies the axioms of Kyoji Saito's “higher residue pairings”.
DOI : 10.4064/ap108-3-4
Keywords: following work daniel barlet pitman res notes math ser ridha belgrade algebra article study existence hermitian forms regular modules every regular module non degenerate bilinear form written unique direct sum modules admit either hermitian anti hermitian form three cases possible explicit examples application extend result ridha belgrade existence modules associated brieskorn module holomorphic function isolated singularity bilinear non degenerate form small transformation belgrades form considered hermitian result satisfies axioms kyoji saitos higher residue pairings

Piotr P. Karwasz 1

1 Instytut Matematyki Uniwersytet Gdański 80-952 Gdańsk, Poland
@article{10_4064_ap108_3_4,
     author = {Piotr P. Karwasz},
     title = {Hermitian $(a,b)$-modules and {Saito's} {\textquotedblleft}higher residue pairings{\textquotedblright}},
     journal = {Annales Polonici Mathematici},
     pages = {241--261},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2013},
     doi = {10.4064/ap108-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-4/}
}
TY  - JOUR
AU  - Piotr P. Karwasz
TI  - Hermitian $(a,b)$-modules and Saito's “higher residue pairings”
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 241
EP  - 261
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-4/
DO  - 10.4064/ap108-3-4
LA  - en
ID  - 10_4064_ap108_3_4
ER  - 
%0 Journal Article
%A Piotr P. Karwasz
%T Hermitian $(a,b)$-modules and Saito's “higher residue pairings”
%J Annales Polonici Mathematici
%D 2013
%P 241-261
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-4/
%R 10.4064/ap108-3-4
%G en
%F 10_4064_ap108_3_4
Piotr P. Karwasz. Hermitian $(a,b)$-modules and Saito's “higher residue pairings”. Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 241-261. doi : 10.4064/ap108-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-4/

Cité par Sources :