Non-natural topologies on spaces of holomorphic functions
Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 215-217.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that every proper Fréchet space with weak$^*$-separable dual admits uncountably many inequivalent Fréchet topologies. This applies, in particular, to spaces of holomorphic functions, solving in the negative a problem of Jarnicki and Pflug. For this case an example with a short self-contained proof is added.
DOI : 10.4064/ap108-3-1
Keywords: shown every proper chet space weak * separable dual admits uncountably many inequivalent chet topologies applies particular spaces holomorphic functions solving negative problem jarnicki pflug example short self contained proof added

Dietmar Vogt 1

1 FB Mathematik und Naturwissenschaften Bergische Universität Wuppertal Gauß-Str. 20 42119 Wuppertal, Germany
@article{10_4064_ap108_3_1,
     author = {Dietmar Vogt},
     title = {Non-natural topologies on spaces of holomorphic functions},
     journal = {Annales Polonici Mathematici},
     pages = {215--217},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2013},
     doi = {10.4064/ap108-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-1/}
}
TY  - JOUR
AU  - Dietmar Vogt
TI  - Non-natural topologies on spaces of holomorphic functions
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 215
EP  - 217
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-1/
DO  - 10.4064/ap108-3-1
LA  - en
ID  - 10_4064_ap108_3_1
ER  - 
%0 Journal Article
%A Dietmar Vogt
%T Non-natural topologies on spaces of holomorphic functions
%J Annales Polonici Mathematici
%D 2013
%P 215-217
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-1/
%R 10.4064/ap108-3-1
%G en
%F 10_4064_ap108_3_1
Dietmar Vogt. Non-natural topologies on spaces of holomorphic functions. Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 215-217. doi : 10.4064/ap108-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-1/

Cité par Sources :