Non-natural topologies on spaces of holomorphic functions
Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 215-217
It is shown that every proper Fréchet space with weak$^*$-separable dual admits uncountably many inequivalent Fréchet topologies. This applies, in particular, to spaces of holomorphic functions, solving in the negative a problem of Jarnicki and Pflug. For this case an example with a short self-contained proof is added.
Keywords:
shown every proper chet space weak * separable dual admits uncountably many inequivalent chet topologies applies particular spaces holomorphic functions solving negative problem jarnicki pflug example short self contained proof added
Affiliations des auteurs :
Dietmar Vogt  1
@article{10_4064_ap108_3_1,
author = {Dietmar Vogt},
title = {Non-natural topologies on spaces of holomorphic functions},
journal = {Annales Polonici Mathematici},
pages = {215--217},
year = {2013},
volume = {108},
number = {3},
doi = {10.4064/ap108-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-1/}
}
Dietmar Vogt. Non-natural topologies on spaces of holomorphic functions. Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 215-217. doi: 10.4064/ap108-3-1
Cité par Sources :