On global regular solutions to the Navier–Stokes equations
with heat convection
Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 155-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Global existence of regular solutions to the Navier–Stokes equations for velocity and pressure coupled with the heat convection equation for temperature in a cylindrical pipe is shown. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First we prove long time existence of regular solutions in $[kT,(k+1)T]$. Having $T$ sufficiently large and imposing some decay estimates on $\| f(t)\| _{L_2(\varOmega )}$, $\| f_{,x_3}(t)\| _{L_2(\varOmega )}$ we continue the local solutions step by step up to a global one.
Keywords:
global existence regular solutions navier stokes equations velocity pressure coupled heat convection equation temperature cylindrical pipe shown assume slip boundary conditions velocity neumann condition temperature first prove long time existence regular solutions having sufficiently large imposing decay estimates varomega varomega continue local solutions step step global
Affiliations des auteurs :
Piotr Kacprzyk 1
@article{10_4064_ap108_2_3,
author = {Piotr Kacprzyk},
title = {On global regular solutions to the {Navier{\textendash}Stokes} equations
with heat convection},
journal = {Annales Polonici Mathematici},
pages = {155--184},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2013},
doi = {10.4064/ap108-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-3/}
}
TY - JOUR AU - Piotr Kacprzyk TI - On global regular solutions to the Navier–Stokes equations with heat convection JO - Annales Polonici Mathematici PY - 2013 SP - 155 EP - 184 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-3/ DO - 10.4064/ap108-2-3 LA - en ID - 10_4064_ap108_2_3 ER -
Piotr Kacprzyk. On global regular solutions to the Navier–Stokes equations with heat convection. Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 155-184. doi: 10.4064/ap108-2-3
Cité par Sources :