A sheaf of Boehmians
Annales Polonici Mathematici, Tome 107 (2013) no. 3, pp. 293-307.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that Boehmians defined over open sets of $\mathbb R^n$ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.
DOI : 10.4064/ap107-3-5
Keywords: boehmians defined sets mathbb constitute sheaf particular shown boehmians satisfy gluing property sheaves topological spaces

Jonathan Beardsley 1 ; Piotr Mikusiński 2

1 Department of Mathematics Johns Hopkins University Baltimore, MD 21218, U.S.A.
2 Department of Mathematics University of Central Florida Orlando, FL 32816, U.S.A.
@article{10_4064_ap107_3_5,
     author = {Jonathan Beardsley and Piotr Mikusi\'nski},
     title = {A sheaf of {Boehmians}},
     journal = {Annales Polonici Mathematici},
     pages = {293--307},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2013},
     doi = {10.4064/ap107-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-3-5/}
}
TY  - JOUR
AU  - Jonathan Beardsley
AU  - Piotr Mikusiński
TI  - A sheaf of Boehmians
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 293
EP  - 307
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap107-3-5/
DO  - 10.4064/ap107-3-5
LA  - en
ID  - 10_4064_ap107_3_5
ER  - 
%0 Journal Article
%A Jonathan Beardsley
%A Piotr Mikusiński
%T A sheaf of Boehmians
%J Annales Polonici Mathematici
%D 2013
%P 293-307
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap107-3-5/
%R 10.4064/ap107-3-5
%G en
%F 10_4064_ap107_3_5
Jonathan Beardsley; Piotr Mikusiński. A sheaf of Boehmians. Annales Polonici Mathematici, Tome 107 (2013) no. 3, pp. 293-307. doi : 10.4064/ap107-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ap107-3-5/

Cité par Sources :