A sheaf of Boehmians
Annales Polonici Mathematici, Tome 107 (2013) no. 3, pp. 293-307
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that Boehmians defined over open sets of $\mathbb R^n$ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.
Keywords:
boehmians defined sets mathbb constitute sheaf particular shown boehmians satisfy gluing property sheaves topological spaces
Affiliations des auteurs :
Jonathan Beardsley 1 ; Piotr Mikusiński 2
@article{10_4064_ap107_3_5,
author = {Jonathan Beardsley and Piotr Mikusi\'nski},
title = {A sheaf of {Boehmians}},
journal = {Annales Polonici Mathematici},
pages = {293--307},
publisher = {mathdoc},
volume = {107},
number = {3},
year = {2013},
doi = {10.4064/ap107-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-3-5/}
}
Jonathan Beardsley; Piotr Mikusiński. A sheaf of Boehmians. Annales Polonici Mathematici, Tome 107 (2013) no. 3, pp. 293-307. doi: 10.4064/ap107-3-5
Cité par Sources :