A global existence result for the compressible Navier–Stokes–Poisson equations in three and higher dimensions
Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 179-198.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper is dedicated to the global well-posedness of the barotropic compressible Navier–Stokes–Poisson system in the whole space $\mathbb{R}^{N}$ with $N\geq 3$. The global existence and uniqueness of the strong solution is shown in the framework of hybrid Besov spaces. The initial velocity has the same critical regularity index as for the incompressible homogeneous Navier–Stokes equations. The proof relies on a uniform estimate for a mixed hyperbolic/parabolic linear system with a convection term.
DOI : 10.4064/ap105-2-6
Keywords: paper dedicated global well posedness barotropic compressible navier stokes poisson system whole space mathbb geq global existence uniqueness strong solution shown framework hybrid besov spaces initial velocity has critical regularity index incompressible homogeneous navier stokes equations proof relies uniform estimate mixed hyperbolic parabolic linear system convection term

Zhensheng Gao 1 ; Zhong Tan 2

1 School of Mathematical Sciences Xiamen University 361005 Xiamen, China and School of Mathematical Sciences Huaqiao University 362021 Quanzhou, China
2 School of Mathematical Sciences Xiamen University 361005 Xiamen, China
@article{10_4064_ap105_2_6,
     author = {Zhensheng  Gao and Zhong Tan},
     title = {A global existence result for the
compressible {Navier{\textendash}Stokes{\textendash}Poisson} equations in three and higher
dimensions},
     journal = {Annales Polonici Mathematici},
     pages = {179--198},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2012},
     doi = {10.4064/ap105-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-6/}
}
TY  - JOUR
AU  - Zhensheng  Gao
AU  - Zhong Tan
TI  - A global existence result for the
compressible Navier–Stokes–Poisson equations in three and higher
dimensions
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 179
EP  - 198
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-6/
DO  - 10.4064/ap105-2-6
LA  - en
ID  - 10_4064_ap105_2_6
ER  - 
%0 Journal Article
%A Zhensheng  Gao
%A Zhong Tan
%T A global existence result for the
compressible Navier–Stokes–Poisson equations in three and higher
dimensions
%J Annales Polonici Mathematici
%D 2012
%P 179-198
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-6/
%R 10.4064/ap105-2-6
%G en
%F 10_4064_ap105_2_6
Zhensheng  Gao; Zhong Tan. A global existence result for the
compressible Navier–Stokes–Poisson equations in three and higher
dimensions. Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 179-198. doi : 10.4064/ap105-2-6. http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-6/

Cité par Sources :