Heights of squares of Littlewood polynomials and infinite series
Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 145-153.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P$ be a unimodular polynomial of degree $d-1$. Then the height $H(P^2)$ of its square is at least $\sqrt{d/2}$ and the product $L(P^2)H(P^2)$, where $L$ denotes the length of a polynomial, is at least $d^2$. We show that for any $\varepsilon>0$ and any $d \geq d(\varepsilon)$ there exists a polynomial $P$ with $\pm 1$ coefficients of degree $d-1$ such that $H(P^2)(2+\varepsilon)\sqrt{d \log d}$ and $L(P^2)H(P^2)(16/3+\varepsilon) d^2 \log d$. A similar result is obtained for the series with $\pm 1$ coefficients. Let $A_m$ be the $m$th coefficient of the square $f(x)^2$ of a unimodular series $f(x)=\sum_{i=0}^{\infty} a_i x^i$, where all $a_i \in \mathbb C$ satisfy $|a_i|=1$. We show that then $\limsup_{m \to \infty} |A_m|/\sqrt{m} \geq 1$ and that there exist some infinite series with $\pm 1$ coefficients and an integer $m(\varepsilon)$ such that $|A_m| (2+\varepsilon)\sqrt{m \log m}$ for each $m \geq m(\varepsilon)$.
DOI : 10.4064/ap105-2-3
Keywords: unimodular polynomial degree d height its square least sqrt product where denotes length polynomial least varepsilon geq varepsilon there exists polynomial coefficients degree d varepsilon sqrt log varepsilon log similar result obtained series coefficients mth coefficient square unimodular series sum infty i where mathbb satisfy limsup infty sqrt geq there exist infinite series coefficients integer varepsilon varepsilon sqrt log each geq varepsilon

Artūras Dubickas 1

1 Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania and Vilnius University Institute of Mathematics and Informatics Vilnius University Akademijos 4 Vilnius LT-08663, Lithuania
@article{10_4064_ap105_2_3,
     author = {Art\={u}ras Dubickas},
     title = {Heights of squares of {Littlewood} polynomials and infinite series},
     journal = {Annales Polonici Mathematici},
     pages = {145--153},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2012},
     doi = {10.4064/ap105-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-3/}
}
TY  - JOUR
AU  - Artūras Dubickas
TI  - Heights of squares of Littlewood polynomials and infinite series
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 145
EP  - 153
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-3/
DO  - 10.4064/ap105-2-3
LA  - en
ID  - 10_4064_ap105_2_3
ER  - 
%0 Journal Article
%A Artūras Dubickas
%T Heights of squares of Littlewood polynomials and infinite series
%J Annales Polonici Mathematici
%D 2012
%P 145-153
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-3/
%R 10.4064/ap105-2-3
%G en
%F 10_4064_ap105_2_3
Artūras Dubickas. Heights of squares of Littlewood polynomials and infinite series. Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 145-153. doi : 10.4064/ap105-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-3/

Cité par Sources :