Heights of squares of Littlewood polynomials and infinite series
Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 145-153
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $P$ be a unimodular polynomial of degree $d-1$. Then the
height $H(P^2)$ of its square is at least $\sqrt{d/2}$ and the
product $L(P^2)H(P^2)$, where $L$ denotes the length of a
polynomial, is at least $d^2$. We show that for any $\varepsilon>0$ and
any
$d \geq d(\varepsilon)$ there
exists a polynomial $P$ with $\pm 1$ coefficients of degree $d-1$
such that $H(P^2)(2+\varepsilon)\sqrt{d \log d}$ and
$L(P^2)H(P^2)(16/3+\varepsilon) d^2 \log d$.
A similar result is obtained
for the series with $\pm 1$ coefficients. Let $A_m$ be the $m$th
coefficient of the square $f(x)^2$ of a unimodular series
$f(x)=\sum_{i=0}^{\infty} a_i x^i$, where all $a_i \in \mathbb C$ satisfy
$|a_i|=1$. We show that then $\limsup_{m \to \infty}
|A_m|/\sqrt{m} \geq 1$ and that there exist some infinite series
with $\pm 1$ coefficients and an integer $m(\varepsilon)$ such that
$|A_m| (2+\varepsilon)\sqrt{m \log m}$ for each $m \geq m(\varepsilon)$.
Keywords:
unimodular polynomial degree d height its square least sqrt product where denotes length polynomial least varepsilon geq varepsilon there exists polynomial coefficients degree d varepsilon sqrt log varepsilon log similar result obtained series coefficients mth coefficient square unimodular series sum infty i where mathbb satisfy limsup infty sqrt geq there exist infinite series coefficients integer varepsilon varepsilon sqrt log each geq varepsilon
Affiliations des auteurs :
Artūras Dubickas 1
@article{10_4064_ap105_2_3,
author = {Art\={u}ras Dubickas},
title = {Heights of squares of {Littlewood} polynomials and infinite series},
journal = {Annales Polonici Mathematici},
pages = {145--153},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {2012},
doi = {10.4064/ap105-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-3/}
}
TY - JOUR AU - Artūras Dubickas TI - Heights of squares of Littlewood polynomials and infinite series JO - Annales Polonici Mathematici PY - 2012 SP - 145 EP - 153 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-3/ DO - 10.4064/ap105-2-3 LA - en ID - 10_4064_ap105_2_3 ER -
Artūras Dubickas. Heights of squares of Littlewood polynomials and infinite series. Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 145-153. doi: 10.4064/ap105-2-3
Cité par Sources :