A problem with almost everywhere equality
Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 105-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A topological space $Y$ is said to have (AEEP) if the following condition is satisfied: Whenever $(X,\mathfrak M)$ is a measurable space and $f,g\colon X \to Y$ are two measurable functions, then the set $\varDelta(f,g) = \{x \in X\colon f(x) = g(x)\}$ is a member of $\mathfrak M$. It is shown that a metrizable space $Y$ has (AEEP) iff the cardinality of $Y$ is not greater than $2^{\aleph_0}$.
DOI : 10.4064/ap104-1-8
Keywords: topological space said have aeep following condition satisfied whenever mathfrak measurable space colon measurable functions set vardelta colon member mathfrak shown metrizable space has aeep cardinality greater nbsp aleph

Piotr Niemiec 1

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap104_1_8,
     author = {Piotr Niemiec},
     title = {A problem with almost everywhere equality},
     journal = {Annales Polonici Mathematici},
     pages = {105--108},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2012},
     doi = {10.4064/ap104-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-8/}
}
TY  - JOUR
AU  - Piotr Niemiec
TI  - A problem with almost everywhere equality
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 105
EP  - 108
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-8/
DO  - 10.4064/ap104-1-8
LA  - en
ID  - 10_4064_ap104_1_8
ER  - 
%0 Journal Article
%A Piotr Niemiec
%T A problem with almost everywhere equality
%J Annales Polonici Mathematici
%D 2012
%P 105-108
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-8/
%R 10.4064/ap104-1-8
%G en
%F 10_4064_ap104_1_8
Piotr Niemiec. A problem with almost everywhere equality. Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 105-108. doi : 10.4064/ap104-1-8. http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-8/

Cité par Sources :