Reduction theorem for general connections
Annales Polonici Mathematici, Tome 102 (2011) no. 3, pp. 231-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the (first) reduction theorem for general and classical connections, i.e. we prove that any natural operator of a general connection $\varGamma $ on a fibered manifold and a classical connection $\varLambda $ on the base manifold can be expressed as a zero order operator of the curvature tensors of $\varGamma $ and $\varLambda $ and their appropriate derivatives.
DOI : 10.4064/ap102-3-4
Keywords: prove first reduction theorem general classical connections prove natural operator general connection vargamma fibered manifold classical connection varlambda base manifold expressed zero order operator curvature tensors vargamma varlambda their appropriate derivatives

Josef Janyška 1

1 Department of Mathematics and Statistics Masaryk University Kotlářská 2 611 37 Brno, The Czech Republic
@article{10_4064_ap102_3_4,
     author = {Josef Jany\v{s}ka},
     title = {Reduction theorem for general connections},
     journal = {Annales Polonici Mathematici},
     pages = {231--254},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2011},
     doi = {10.4064/ap102-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-4/}
}
TY  - JOUR
AU  - Josef Janyška
TI  - Reduction theorem for general connections
JO  - Annales Polonici Mathematici
PY  - 2011
SP  - 231
EP  - 254
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-4/
DO  - 10.4064/ap102-3-4
LA  - en
ID  - 10_4064_ap102_3_4
ER  - 
%0 Journal Article
%A Josef Janyška
%T Reduction theorem for general connections
%J Annales Polonici Mathematici
%D 2011
%P 231-254
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-4/
%R 10.4064/ap102-3-4
%G en
%F 10_4064_ap102_3_4
Josef Janyška. Reduction theorem for general connections. Annales Polonici Mathematici, Tome 102 (2011) no. 3, pp. 231-254. doi : 10.4064/ap102-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-4/

Cité par Sources :