Gelfand transform for a Boehmian space of analytic functions
Annales Polonici Mathematici, Tome 101 (2011) no. 1, pp. 39-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H^\infty(\mathbb{D})$ denote the usual commutative Banach
algebra of bounded analytic functions on the open unit disc
$\mathbb{D}$ of the finite complex plane, under Hadamard product of
power series. We construct a Boehmian space
which includes the Banach algebra $A$ where $A$ is the commutative
Banach algebra with unit containing $H^\infty(\mathbb{D})$. The
Gelfand transform theory is extended to this setup along with the
usual classical properties. The image is also a Boehmian space which
includes the Banach algebra $C({\mit\Delta})$ of continuous functions on
the maximal ideal space ${\mit\Delta}$ (where ${\mit\Delta}$ is given the usual
Gelfand topology). It is shown that every $F \in C({\mit\Delta})$ is the
Gelfand transform of a suitable Boehmian. It should be noted that in
the classical theory the Gelfand transform from $A$ into $C({\mit\Delta})$
is not surjective even though it can be shown that the image is
dense. Thus the context of Boehmians enables us to identify every
element of $C({\mit\Delta})$ as the Gelfand transform of a suitable
convolution quotient of analytic functions. (Here the convolution is
the Hadamard convolution).
Keywords:
infty mathbb denote usual commutative banach algebra bounded analytic functions unit disc mathbb finite complex plane under hadamard product power series construct boehmian space which includes banach algebra where commutative banach algebra unit containing infty mathbb gelfand transform theory extended setup along usual classical properties image boehmian space which includes banach algebra mit delta continuous functions maximal ideal space mit delta where mit delta given usual gelfand topology shown every mit delta gelfand transform suitable boehmian should noted classical theory gelfand transform mit delta surjective even though shown image dense context boehmians enables identify every element mit delta gelfand transform suitable convolution quotient analytic functions here convolution hadamard convolution
Affiliations des auteurs :
V. Karunakaran 1 ; R. Angeline Chella Rajathi 1
@article{10_4064_ap101_1_4,
author = {V. Karunakaran and R. Angeline Chella Rajathi},
title = {Gelfand transform for a {Boehmian} space of analytic functions},
journal = {Annales Polonici Mathematici},
pages = {39--45},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2011},
doi = {10.4064/ap101-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap101-1-4/}
}
TY - JOUR AU - V. Karunakaran AU - R. Angeline Chella Rajathi TI - Gelfand transform for a Boehmian space of analytic functions JO - Annales Polonici Mathematici PY - 2011 SP - 39 EP - 45 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap101-1-4/ DO - 10.4064/ap101-1-4 LA - en ID - 10_4064_ap101_1_4 ER -
%0 Journal Article %A V. Karunakaran %A R. Angeline Chella Rajathi %T Gelfand transform for a Boehmian space of analytic functions %J Annales Polonici Mathematici %D 2011 %P 39-45 %V 101 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap101-1-4/ %R 10.4064/ap101-1-4 %G en %F 10_4064_ap101_1_4
V. Karunakaran; R. Angeline Chella Rajathi. Gelfand transform for a Boehmian space of analytic functions. Annales Polonici Mathematici, Tome 101 (2011) no. 1, pp. 39-45. doi: 10.4064/ap101-1-4
Cité par Sources :