Quasi-homogeneous linear systems on $\mathbb P^2$ with base
points of multiplicity 7, 8, 9, 10
Annales Polonici Mathematici, Tome 100 (2011) no. 3, pp. 277-300
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the Segre–Gimigliano–Harbourne–Hirschowitz conjecture
holds for quasi-homogeneous linear systems on $\mathbb P^2$ for
$m=7$, 8, 9, 10, i.e.
systems of curves of a given degree passing through points in general
position with multiplicities at least $m,\dots,m,m_0$, where $m=7$, 8, 9, 10, $m_0$
is arbitrary.
Keywords:
prove segre gimigliano harbourne hirschowitz conjecture holds quasi homogeneous linear systems mathbb systems curves given degree passing through points general position multiplicities least dots where arbitrary
Affiliations des auteurs :
Marcin Dumnicki 1
@article{10_4064_ap100_3_5,
author = {Marcin Dumnicki},
title = {Quasi-homogeneous linear systems on $\mathbb P^2$ with base
points of multiplicity 7, 8, 9, 10},
journal = {Annales Polonici Mathematici},
pages = {277--300},
publisher = {mathdoc},
volume = {100},
number = {3},
year = {2011},
doi = {10.4064/ap100-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-5/}
}
TY - JOUR AU - Marcin Dumnicki TI - Quasi-homogeneous linear systems on $\mathbb P^2$ with base points of multiplicity 7, 8, 9, 10 JO - Annales Polonici Mathematici PY - 2011 SP - 277 EP - 300 VL - 100 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-5/ DO - 10.4064/ap100-3-5 LA - en ID - 10_4064_ap100_3_5 ER -
%0 Journal Article %A Marcin Dumnicki %T Quasi-homogeneous linear systems on $\mathbb P^2$ with base points of multiplicity 7, 8, 9, 10 %J Annales Polonici Mathematici %D 2011 %P 277-300 %V 100 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap100-3-5/ %R 10.4064/ap100-3-5 %G en %F 10_4064_ap100_3_5
Marcin Dumnicki. Quasi-homogeneous linear systems on $\mathbb P^2$ with base points of multiplicity 7, 8, 9, 10. Annales Polonici Mathematici, Tome 100 (2011) no. 3, pp. 277-300. doi: 10.4064/ap100-3-5
Cité par Sources :