Koebe's general uniformisation theorem for planar Riemann surfaces
Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 77-85
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a complete and transparent proof of Koebe's General Uniformisation Theorem that every planar Riemann surface is biholomorphic to a domain in the Riemann sphere $\hat{\mathbb{C}}$, by showing that a domain with analytic boundary and at least two boundary components on a planar Riemann surface is biholomorphic to a circular-slit annulus in $\mathbb{C}$.
Keywords:
complete transparent proof koebes general uniformisation theorem every planar riemann surface biholomorphic domain riemann sphere hat mathbb showing domain analytic boundary least boundary components planar riemann surface biholomorphic circular slit annulus mathbb
Affiliations des auteurs :
Gollakota V. V. Hemasundar 1
@article{10_4064_ap100_1_7,
author = {Gollakota V. V. Hemasundar},
title = {Koebe's general uniformisation theorem for planar {Riemann} surfaces},
journal = {Annales Polonici Mathematici},
pages = {77--85},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {2011},
doi = {10.4064/ap100-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-7/}
}
TY - JOUR AU - Gollakota V. V. Hemasundar TI - Koebe's general uniformisation theorem for planar Riemann surfaces JO - Annales Polonici Mathematici PY - 2011 SP - 77 EP - 85 VL - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-7/ DO - 10.4064/ap100-1-7 LA - en ID - 10_4064_ap100_1_7 ER -
Gollakota V. V. Hemasundar. Koebe's general uniformisation theorem for planar Riemann surfaces. Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 77-85. doi: 10.4064/ap100-1-7
Cité par Sources :