Koebe's general uniformisation theorem for planar Riemann surfaces
Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 77-85.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a complete and transparent proof of Koebe's General Uniformisation Theorem that every planar Riemann surface is biholomorphic to a domain in the Riemann sphere $\hat{\mathbb{C}}$, by showing that a domain with analytic boundary and at least two boundary components on a planar Riemann surface is biholomorphic to a circular-slit annulus in $\mathbb{C}$.
DOI : 10.4064/ap100-1-7
Keywords: complete transparent proof koebes general uniformisation theorem every planar riemann surface biholomorphic domain riemann sphere hat mathbb showing domain analytic boundary least boundary components planar riemann surface biholomorphic circular slit annulus mathbb

Gollakota V. V. Hemasundar 1

1 Department of Mathematics SIWS College Mumbai, India
@article{10_4064_ap100_1_7,
     author = {Gollakota V. V. Hemasundar},
     title = {Koebe's general uniformisation theorem for planar {Riemann} surfaces},
     journal = {Annales Polonici Mathematici},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2011},
     doi = {10.4064/ap100-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-7/}
}
TY  - JOUR
AU  - Gollakota V. V. Hemasundar
TI  - Koebe's general uniformisation theorem for planar Riemann surfaces
JO  - Annales Polonici Mathematici
PY  - 2011
SP  - 77
EP  - 85
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-7/
DO  - 10.4064/ap100-1-7
LA  - en
ID  - 10_4064_ap100_1_7
ER  - 
%0 Journal Article
%A Gollakota V. V. Hemasundar
%T Koebe's general uniformisation theorem for planar Riemann surfaces
%J Annales Polonici Mathematici
%D 2011
%P 77-85
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-7/
%R 10.4064/ap100-1-7
%G en
%F 10_4064_ap100_1_7
Gollakota V. V. Hemasundar. Koebe's general uniformisation theorem for planar Riemann surfaces. Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 77-85. doi : 10.4064/ap100-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-7/

Cité par Sources :