1Department of Mathematics Kunming University of Science and Technology 650093 Kunming, China 2College of Mathematics and Information Sciences Jiangxi Normal University 330022 Nanchang, China
Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 25-31
Let $p(z)$ be a polynomial of the form
$$
p(z)=\sum_{j=0}^{n}a_{j} z^{j},\quad\ a_{j}\in \{-1, 1\}.
$$
We discuss a sufficient condition for the existence of zeros of $p(z)$ in an annulus
$$\{z\in \mathbb{C}: 1- c|z| 1+c\},$$
where $c>0$ is an absolute constant. This condition is a
combination of Carleman's formula and Jensen's formula, which is a
new approach in the study of zeros of polynomials.
Keywords:
polynomial form sum quad discuss sufficient condition existence zeros annulus mathbb where absolute constant condition combination carlemans formula jensens formula which approach study zeros polynomials
1
Department of Mathematics Kunming University of Science and Technology 650093 Kunming, China
2
College of Mathematics and Information Sciences Jiangxi Normal University 330022 Nanchang, China
@article{10_4064_ap100_1_3,
author = {Xiangdong Yang and Caifeng Yi and Jin Tu},
title = {A note on the number of zeros of polynomials in an annulus},
journal = {Annales Polonici Mathematici},
pages = {25--31},
year = {2011},
volume = {100},
number = {1},
doi = {10.4064/ap100-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-3/}
}
TY - JOUR
AU - Xiangdong Yang
AU - Caifeng Yi
AU - Jin Tu
TI - A note on the number of zeros of polynomials in an annulus
JO - Annales Polonici Mathematici
PY - 2011
SP - 25
EP - 31
VL - 100
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-3/
DO - 10.4064/ap100-1-3
LA - en
ID - 10_4064_ap100_1_3
ER -
%0 Journal Article
%A Xiangdong Yang
%A Caifeng Yi
%A Jin Tu
%T A note on the number of zeros of polynomials in an annulus
%J Annales Polonici Mathematici
%D 2011
%P 25-31
%V 100
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-3/
%R 10.4064/ap100-1-3
%G en
%F 10_4064_ap100_1_3
Xiangdong Yang; Caifeng Yi; Jin Tu. A note on the number of zeros of polynomials in an annulus. Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 25-31. doi: 10.4064/ap100-1-3