A note on the number of zeros of polynomials in an annulus
Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 25-31
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p(z)$ be a polynomial of the form
$$
p(z)=\sum_{j=0}^{n}a_{j} z^{j},\quad\ a_{j}\in \{-1, 1\}.
$$
We discuss a sufficient condition for the existence of zeros of $p(z)$ in an annulus
$$\{z\in \mathbb{C}: 1- c|z| 1+c\},$$
where $c>0$ is an absolute constant. This condition is a
combination of Carleman's formula and Jensen's formula, which is a
new approach in the study of zeros of polynomials.
Keywords:
polynomial form sum quad discuss sufficient condition existence zeros annulus mathbb where absolute constant condition combination carlemans formula jensens formula which approach study zeros polynomials
Affiliations des auteurs :
Xiangdong Yang 1 ; Caifeng Yi 2 ; Jin Tu 2
@article{10_4064_ap100_1_3,
author = {Xiangdong Yang and Caifeng Yi and Jin Tu},
title = {A note on the number of zeros of polynomials in an annulus},
journal = {Annales Polonici Mathematici},
pages = {25--31},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {2011},
doi = {10.4064/ap100-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-3/}
}
TY - JOUR AU - Xiangdong Yang AU - Caifeng Yi AU - Jin Tu TI - A note on the number of zeros of polynomials in an annulus JO - Annales Polonici Mathematici PY - 2011 SP - 25 EP - 31 VL - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-3/ DO - 10.4064/ap100-1-3 LA - en ID - 10_4064_ap100_1_3 ER -
%0 Journal Article %A Xiangdong Yang %A Caifeng Yi %A Jin Tu %T A note on the number of zeros of polynomials in an annulus %J Annales Polonici Mathematici %D 2011 %P 25-31 %V 100 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap100-1-3/ %R 10.4064/ap100-1-3 %G en %F 10_4064_ap100_1_3
Xiangdong Yang; Caifeng Yi; Jin Tu. A note on the number of zeros of polynomials in an annulus. Annales Polonici Mathematici, Tome 100 (2011) no. 1, pp. 25-31. doi: 10.4064/ap100-1-3
Cité par Sources :