Newton numbers and residual measures of plurisubharmonic functions
Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 213-231
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the masses charged by $(dd^cu)^n$ at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.
Keywords:
Monge-Ampère operator, local indicator, directional Lelong number, plurisubharmonic function, Newton polyhedron
Affiliations des auteurs :
Alexander Rashkovskii 1
@article{10_4064_ap_75_3_213_231,
author = {Alexander Rashkovskii},
title = {Newton numbers and residual measures of plurisubharmonic functions},
journal = {Annales Polonici Mathematici},
pages = {213--231},
year = {2000},
volume = {75},
number = {3},
doi = {10.4064/ap-75-3-213-231},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-213-231/}
}
TY - JOUR AU - Alexander Rashkovskii TI - Newton numbers and residual measures of plurisubharmonic functions JO - Annales Polonici Mathematici PY - 2000 SP - 213 EP - 231 VL - 75 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-3-213-231/ DO - 10.4064/ap-75-3-213-231 LA - en ID - 10_4064_ap_75_3_213_231 ER -
Alexander Rashkovskii. Newton numbers and residual measures of plurisubharmonic functions. Annales Polonici Mathematici, Tome 75 (2000) no. 3, pp. 213-231. doi: 10.4064/ap-75-3-213-231
Cité par Sources :