Regular analytic transformations of $ℝ^2$
Annales Polonici Mathematici, Tome 75 (2000) no. 2, pp. 99-109
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Existence of loops for non-injective regular analytic transformations of the real plane is shown. As an application, a criterion for injectivity of a regular analytic transformation of $ℝ^2$ in terms of the Jacobian and the first and second order partial derivatives is obtained. This criterion is new even in the special case of polynomial transformations.
Keywords:
injectivity, regular analytic maps, Jacobian
Affiliations des auteurs :
Joseph Gubeladze 1
@article{10_4064_ap_75_2_99_109,
author = {Joseph Gubeladze},
title = {Regular analytic transformations of $\ensuremath{\mathbb{R}}^2$},
journal = {Annales Polonici Mathematici},
pages = {99--109},
year = {2000},
volume = {75},
number = {2},
doi = {10.4064/ap-75-2-99-109},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-2-99-109/}
}
Joseph Gubeladze. Regular analytic transformations of $ℝ^2$. Annales Polonici Mathematici, Tome 75 (2000) no. 2, pp. 99-109. doi: 10.4064/ap-75-2-99-109
Cité par Sources :