Local characterization of algebraic manifolds and characterization of components of the set $S_f$
Annales Polonici Mathematici, Tome 75 (2000) no. 1, pp. 7-13
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that every n-dimensional smooth algebraic variety X can be covered by Zariski open subsets $U_i$ which are isomorphic to closed smooth hypersurfaces in $ℂ^{n+1}$. As an application we show that forevery (pure) n-1-dimensional ℂ-uniruled variety $X ⊂ ℂ^m$ there is a generically-finite (even quasi-finite) polynomial mapping $f:ℂ^n → ℂ^m$ such that $X ⊂ S_f$. This gives (together with [3]) a full characterization of irreducible components of the set $S_f$ for generically-finite polynomial mappings $f:ℂ^n→ℂ^m$.
Keywords:
ℂ-uniruled variety, polynomial mappings, affine space
Affiliations des auteurs :
Zbigniew Jelonek 1
@article{10_4064_ap_75_1_7_13,
author = {Zbigniew Jelonek},
title = {Local characterization of algebraic manifolds and characterization of components of the set $S_f$},
journal = {Annales Polonici Mathematici},
pages = {7--13},
year = {2000},
volume = {75},
number = {1},
doi = {10.4064/ap-75-1-7-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-7-13/}
}
TY - JOUR AU - Zbigniew Jelonek TI - Local characterization of algebraic manifolds and characterization of components of the set $S_f$ JO - Annales Polonici Mathematici PY - 2000 SP - 7 EP - 13 VL - 75 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-7-13/ DO - 10.4064/ap-75-1-7-13 LA - en ID - 10_4064_ap_75_1_7_13 ER -
%0 Journal Article %A Zbigniew Jelonek %T Local characterization of algebraic manifolds and characterization of components of the set $S_f$ %J Annales Polonici Mathematici %D 2000 %P 7-13 %V 75 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-75-1-7-13/ %R 10.4064/ap-75-1-7-13 %G en %F 10_4064_ap_75_1_7_13
Zbigniew Jelonek. Local characterization of algebraic manifolds and characterization of components of the set $S_f$. Annales Polonici Mathematici, Tome 75 (2000) no. 1, pp. 7-13. doi: 10.4064/ap-75-1-7-13
Cité par Sources :