On the energy of unit vector fields with isolated singularities
Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 269-274.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the energy of a unit vector field defined on a compact Riemannian manifold M except at finitely many points. We obtain an estimate of the energy from below which appears to be sharp when M is a sphere of dimension >3. In this case, the minimum of energy is attained if and only if the vector field is totally geodesic with two singularities situated at two antipodal points (at the 'south and north pole').
DOI : 10.4064/ap-73-3-269-274
Keywords: Ricci curvature, vector field, mean curvature, energy

Fabiano Brito 1 ; Paweł Walczak 1

1
@article{10_4064_ap_73_3_269_274,
     author = {Fabiano Brito and Pawe{\l} Walczak},
     title = {On the energy of unit vector fields with isolated singularities},
     journal = {Annales Polonici Mathematici},
     pages = {269--274},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2000},
     doi = {10.4064/ap-73-3-269-274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/}
}
TY  - JOUR
AU  - Fabiano Brito
AU  - Paweł Walczak
TI  - On the energy of unit vector fields with isolated singularities
JO  - Annales Polonici Mathematici
PY  - 2000
SP  - 269
EP  - 274
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/
DO  - 10.4064/ap-73-3-269-274
LA  - en
ID  - 10_4064_ap_73_3_269_274
ER  - 
%0 Journal Article
%A Fabiano Brito
%A Paweł Walczak
%T On the energy of unit vector fields with isolated singularities
%J Annales Polonici Mathematici
%D 2000
%P 269-274
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/
%R 10.4064/ap-73-3-269-274
%G en
%F 10_4064_ap_73_3_269_274
Fabiano Brito; Paweł Walczak. On the energy of unit vector fields with isolated singularities. Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 269-274. doi : 10.4064/ap-73-3-269-274. http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/

Cité par Sources :