On the energy of unit vector fields with isolated singularities
Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 269-274
We consider the energy of a unit vector field defined on a compact Riemannian manifold M except at finitely many points. We obtain an estimate of the energy from below which appears to be sharp when M is a sphere of dimension >3. In this case, the minimum of energy is attained if and only if the vector field is totally geodesic with two singularities situated at two antipodal points (at the 'south and north pole').
@article{10_4064_ap_73_3_269_274,
author = {Fabiano Brito and Pawe{\l} Walczak},
title = {On the energy of unit vector fields with isolated singularities},
journal = {Annales Polonici Mathematici},
pages = {269--274},
year = {2000},
volume = {73},
number = {3},
doi = {10.4064/ap-73-3-269-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/}
}
TY - JOUR AU - Fabiano Brito AU - Paweł Walczak TI - On the energy of unit vector fields with isolated singularities JO - Annales Polonici Mathematici PY - 2000 SP - 269 EP - 274 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/ DO - 10.4064/ap-73-3-269-274 LA - en ID - 10_4064_ap_73_3_269_274 ER -
%0 Journal Article %A Fabiano Brito %A Paweł Walczak %T On the energy of unit vector fields with isolated singularities %J Annales Polonici Mathematici %D 2000 %P 269-274 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-73-3-269-274/ %R 10.4064/ap-73-3-269-274 %G en %F 10_4064_ap_73_3_269_274
Fabiano Brito; Paweł Walczak. On the energy of unit vector fields with isolated singularities. Annales Polonici Mathematici, Tome 73 (2000) no. 3, pp. 269-274. doi: 10.4064/ap-73-3-269-274
Cité par Sources :