On bifurcation intervals for nonlinear eigenvalue problems
Annales Polonici Mathematici, Tome 71 (1999) no. 1, pp. 39-46.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a sufficient condition for [μ-M, μ+M] × {0} to be a bifurcation interval of the equation u = L(λu + F(u)), where L is a linear symmetric operator in a Hilbert space, μ ∈ r(L) is of odd multiplicity, and F is a nonlinear operator. This abstract result provides an elementary proof of the existence of bifurcation intervals for some eigenvalue problems with nondifferentiable nonlinearities. All the results obtained may be easily transferred to the case of bifurcation from infinity.
DOI : 10.4064/ap-71-1-39-46
Keywords: bifurcation interval, symmetric operator, Sturm-Liouville problem, Dirichlet problem, Leray-Schauder degree, characteristic values

Jolanta Przybycin 1

1
@article{10_4064_ap_71_1_39_46,
     author = {Jolanta Przybycin},
     title = {On bifurcation intervals for nonlinear eigenvalue problems},
     journal = {Annales Polonici Mathematici},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {1999},
     doi = {10.4064/ap-71-1-39-46},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-71-1-39-46/}
}
TY  - JOUR
AU  - Jolanta Przybycin
TI  - On bifurcation intervals for nonlinear eigenvalue problems
JO  - Annales Polonici Mathematici
PY  - 1999
SP  - 39
EP  - 46
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-71-1-39-46/
DO  - 10.4064/ap-71-1-39-46
LA  - en
ID  - 10_4064_ap_71_1_39_46
ER  - 
%0 Journal Article
%A Jolanta Przybycin
%T On bifurcation intervals for nonlinear eigenvalue problems
%J Annales Polonici Mathematici
%D 1999
%P 39-46
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-71-1-39-46/
%R 10.4064/ap-71-1-39-46
%G en
%F 10_4064_ap_71_1_39_46
Jolanta Przybycin. On bifurcation intervals for nonlinear eigenvalue problems. Annales Polonici Mathematici, Tome 71 (1999) no. 1, pp. 39-46. doi : 10.4064/ap-71-1-39-46. http://geodesic.mathdoc.fr/articles/10.4064/ap-71-1-39-46/

Cité par Sources :