Invariant measures and the compactness of the domain
Annales Polonici Mathematici, Tome 69 (1998) no. 1, pp. 13-24
We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ' and with some conditions on the variation $V_{[0,x]}(1/|τ'|)$ which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous "bounded variation" existence theorems.
@article{10_4064_ap_69_1_13_24,
author = {Marian Jab{\l}o\'nski and Pawe{\l} G\'ora},
title = {Invariant measures and the compactness of the domain},
journal = {Annales Polonici Mathematici},
pages = {13--24},
year = {1998},
volume = {69},
number = {1},
doi = {10.4064/ap-69-1-13-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/}
}
TY - JOUR AU - Marian Jabłoński AU - Paweł Góra TI - Invariant measures and the compactness of the domain JO - Annales Polonici Mathematici PY - 1998 SP - 13 EP - 24 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/ DO - 10.4064/ap-69-1-13-24 LA - en ID - 10_4064_ap_69_1_13_24 ER -
Marian Jabłoński; Paweł Góra. Invariant measures and the compactness of the domain. Annales Polonici Mathematici, Tome 69 (1998) no. 1, pp. 13-24. doi: 10.4064/ap-69-1-13-24
Cité par Sources :