Invariant measures and the compactness of the domain
Annales Polonici Mathematici, Tome 69 (1998) no. 1, pp. 13-24
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ' and with some conditions on the variation $V_{[0,x]}(1/|τ'|)$ which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous "bounded variation" existence theorems.
Affiliations des auteurs :
Marian Jabłoński 1 ; Paweł Góra 1
@article{10_4064_ap_69_1_13_24,
author = {Marian Jab{\l}o\'nski and Pawe{\l} G\'ora},
title = {Invariant measures and the compactness of the domain},
journal = {Annales Polonici Mathematici},
pages = {13--24},
year = {1998},
volume = {69},
number = {1},
doi = {10.4064/ap-69-1-13-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/}
}
TY - JOUR AU - Marian Jabłoński AU - Paweł Góra TI - Invariant measures and the compactness of the domain JO - Annales Polonici Mathematici PY - 1998 SP - 13 EP - 24 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/ DO - 10.4064/ap-69-1-13-24 LA - en ID - 10_4064_ap_69_1_13_24 ER -
Marian Jabłoński; Paweł Góra. Invariant measures and the compactness of the domain. Annales Polonici Mathematici, Tome 69 (1998) no. 1, pp. 13-24. doi: 10.4064/ap-69-1-13-24
Cité par Sources :