Invariant measures and the compactness of the domain
Annales Polonici Mathematici, Tome 69 (1998) no. 1, pp. 13-24.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ' and with some conditions on the variation $V_{[0,x]}(1/|τ'|)$ which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous "bounded variation" existence theorems.
DOI : 10.4064/ap-69-1-13-24

Marian Jabłoński 1 ; Paweł Góra 1

1
@article{10_4064_ap_69_1_13_24,
     author = {Marian Jab{\l}o\'nski and Pawe{\l} G\'ora},
     title = {Invariant measures and the compactness of the domain},
     journal = {Annales Polonici Mathematici},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {1998},
     doi = {10.4064/ap-69-1-13-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/}
}
TY  - JOUR
AU  - Marian Jabłoński
AU  - Paweł Góra
TI  - Invariant measures and the compactness of the domain
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 13
EP  - 24
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/
DO  - 10.4064/ap-69-1-13-24
LA  - en
ID  - 10_4064_ap_69_1_13_24
ER  - 
%0 Journal Article
%A Marian Jabłoński
%A Paweł Góra
%T Invariant measures and the compactness of the domain
%J Annales Polonici Mathematici
%D 1998
%P 13-24
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/
%R 10.4064/ap-69-1-13-24
%G en
%F 10_4064_ap_69_1_13_24
Marian Jabłoński; Paweł Góra. Invariant measures and the compactness of the domain. Annales Polonici Mathematici, Tome 69 (1998) no. 1, pp. 13-24. doi : 10.4064/ap-69-1-13-24. http://geodesic.mathdoc.fr/articles/10.4064/ap-69-1-13-24/

Cité par Sources :