A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 177-189
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the problem of the existence of positive solutions u to the problem $u^{(n)}(x) = g(u(x))$, $u(0) = u'(0) = ... = u^{(n-1)}(0) = 0$ (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition $∫₀^δ 1/s [s/g(s)]^{1/n} ds ∞$ is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
Keywords:
singular initial value problems for ordinary differential equations, Volterra type integral equations, blowing up solutions
Affiliations des auteurs :
Wojciech Mydlarczyk 1
@article{10_4064_ap_68_2_177_189,
author = {Wojciech Mydlarczyk},
title = {A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$},
journal = {Annales Polonici Mathematici},
pages = {177--189},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1998},
doi = {10.4064/ap-68-2-177-189},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/}
}
TY - JOUR
AU - Wojciech Mydlarczyk
TI - A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
JO - Annales Polonici Mathematici
PY - 1998
SP - 177
EP - 189
VL - 68
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/
DO - 10.4064/ap-68-2-177-189
LA - en
ID - 10_4064_ap_68_2_177_189
ER -
%0 Journal Article
%A Wojciech Mydlarczyk
%T A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
%J Annales Polonici Mathematici
%D 1998
%P 177-189
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/
%R 10.4064/ap-68-2-177-189
%G en
%F 10_4064_ap_68_2_177_189
Wojciech Mydlarczyk. A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$. Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 177-189. doi: 10.4064/ap-68-2-177-189
Cité par Sources :