A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 177-189.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the problem of the existence of positive solutions u to the problem $u^{(n)}(x) = g(u(x))$, $u(0) = u'(0) = ... = u^{(n-1)}(0) = 0$ (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition $∫₀^δ 1/s [s/g(s)]^{1/n} ds ∞$ is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
DOI : 10.4064/ap-68-2-177-189
Keywords: singular initial value problems for ordinary differential equations, Volterra type integral equations, blowing up solutions

Wojciech Mydlarczyk 1

1
@article{10_4064_ap_68_2_177_189,
     author = {Wojciech Mydlarczyk},
     title = {A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$},
     journal = {Annales Polonici Mathematici},
     pages = {177--189},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1998},
     doi = {10.4064/ap-68-2-177-189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/}
}
TY  - JOUR
AU  - Wojciech Mydlarczyk
TI  - A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
JO  - Annales Polonici Mathematici
PY  - 1998
SP  - 177
EP  - 189
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/
DO  - 10.4064/ap-68-2-177-189
LA  - en
ID  - 10_4064_ap_68_2_177_189
ER  - 
%0 Journal Article
%A Wojciech Mydlarczyk
%T A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$
%J Annales Polonici Mathematici
%D 1998
%P 177-189
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/
%R 10.4064/ap-68-2-177-189
%G en
%F 10_4064_ap_68_2_177_189
Wojciech Mydlarczyk. A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$. Annales Polonici Mathematici, Tome 68 (1998) no. 2, pp. 177-189. doi : 10.4064/ap-68-2-177-189. http://geodesic.mathdoc.fr/articles/10.4064/ap-68-2-177-189/

Cité par Sources :