Only one of generalized gradients can be elliptic
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 111-120
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.
Keywords:
connection, group representation, Young diagram, elliptic operator
Affiliations des auteurs :
Jerzy Kalina 1 ; Antoni Pierzchalski 1 ; Paweł Walczak 1
@article{10_4064_ap_67_2_111_120,
author = {Jerzy Kalina and Antoni Pierzchalski and Pawe{\l} Walczak},
title = {Only one of generalized gradients can be elliptic},
journal = {Annales Polonici Mathematici},
pages = {111--120},
year = {1997},
volume = {67},
number = {2},
doi = {10.4064/ap-67-2-111-120},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/}
}
TY - JOUR AU - Jerzy Kalina AU - Antoni Pierzchalski AU - Paweł Walczak TI - Only one of generalized gradients can be elliptic JO - Annales Polonici Mathematici PY - 1997 SP - 111 EP - 120 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/ DO - 10.4064/ap-67-2-111-120 LA - en ID - 10_4064_ap_67_2_111_120 ER -
%0 Journal Article %A Jerzy Kalina %A Antoni Pierzchalski %A Paweł Walczak %T Only one of generalized gradients can be elliptic %J Annales Polonici Mathematici %D 1997 %P 111-120 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/ %R 10.4064/ap-67-2-111-120 %G en %F 10_4064_ap_67_2_111_120
Jerzy Kalina; Antoni Pierzchalski; Paweł Walczak. Only one of generalized gradients can be elliptic. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 111-120. doi: 10.4064/ap-67-2-111-120
Cité par Sources :