Only one of generalized gradients can be elliptic
Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 111-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.
DOI : 10.4064/ap-67-2-111-120
Keywords: connection, group representation, Young diagram, elliptic operator

Jerzy Kalina 1 ; Antoni Pierzchalski 1 ; Paweł Walczak 1

1
@article{10_4064_ap_67_2_111_120,
     author = {Jerzy Kalina and Antoni Pierzchalski and Pawe{\l} Walczak},
     title = {Only one of generalized gradients can be elliptic},
     journal = {Annales Polonici Mathematici},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1997},
     doi = {10.4064/ap-67-2-111-120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/}
}
TY  - JOUR
AU  - Jerzy Kalina
AU  - Antoni Pierzchalski
AU  - Paweł Walczak
TI  - Only one of generalized gradients can be elliptic
JO  - Annales Polonici Mathematici
PY  - 1997
SP  - 111
EP  - 120
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/
DO  - 10.4064/ap-67-2-111-120
LA  - en
ID  - 10_4064_ap_67_2_111_120
ER  - 
%0 Journal Article
%A Jerzy Kalina
%A Antoni Pierzchalski
%A Paweł Walczak
%T Only one of generalized gradients can be elliptic
%J Annales Polonici Mathematici
%D 1997
%P 111-120
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/
%R 10.4064/ap-67-2-111-120
%G en
%F 10_4064_ap_67_2_111_120
Jerzy Kalina; Antoni Pierzchalski; Paweł Walczak. Only one of generalized gradients can be elliptic. Annales Polonici Mathematici, Tome 67 (1997) no. 2, pp. 111-120. doi : 10.4064/ap-67-2-111-120. http://geodesic.mathdoc.fr/articles/10.4064/ap-67-2-111-120/

Cité par Sources :