On the norm-closure of the class of hypercyclic operators
Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 157-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if $f(σ_{W}(T)) ∪ {z ∈ ℂ: |z| = 1}$ is connected, where $σ_{W}(T)$ denotes the Weyl spectrum of T.
DOI : 10.4064/ap-65-2-157-161
Keywords: hypercyclic operators

Christoph Schmoeger 1

1
@article{10_4064_ap_65_2_157_161,
     author = {Christoph Schmoeger},
     title = {On the norm-closure of the class of hypercyclic operators},
     journal = {Annales Polonici Mathematici},
     pages = {157--161},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-65-2-157-161},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-157-161/}
}
TY  - JOUR
AU  - Christoph Schmoeger
TI  - On the norm-closure of the class of hypercyclic operators
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 157
EP  - 161
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-157-161/
DO  - 10.4064/ap-65-2-157-161
LA  - en
ID  - 10_4064_ap_65_2_157_161
ER  - 
%0 Journal Article
%A Christoph Schmoeger
%T On the norm-closure of the class of hypercyclic operators
%J Annales Polonici Mathematici
%D 1996
%P 157-161
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-157-161/
%R 10.4064/ap-65-2-157-161
%G en
%F 10_4064_ap_65_2_157_161
Christoph Schmoeger. On the norm-closure of the class of hypercyclic operators. Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 157-161. doi : 10.4064/ap-65-2-157-161. http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-157-161/

Cité par Sources :