On the norm-closure of the class of hypercyclic operators
Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 157-161
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if $f(σ_{W}(T)) ∪ {z ∈ ℂ: |z| = 1}$ is connected, where $σ_{W}(T)$ denotes the Weyl spectrum of T.
Keywords:
hypercyclic operators
Affiliations des auteurs :
Christoph Schmoeger 1
@article{10_4064_ap_65_2_157_161,
author = {Christoph Schmoeger},
title = {On the norm-closure of the class of hypercyclic operators},
journal = {Annales Polonici Mathematici},
pages = {157--161},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {1996},
doi = {10.4064/ap-65-2-157-161},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-157-161/}
}
TY - JOUR AU - Christoph Schmoeger TI - On the norm-closure of the class of hypercyclic operators JO - Annales Polonici Mathematici PY - 1996 SP - 157 EP - 161 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-157-161/ DO - 10.4064/ap-65-2-157-161 LA - en ID - 10_4064_ap_65_2_157_161 ER -
Christoph Schmoeger. On the norm-closure of the class of hypercyclic operators. Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 157-161. doi: 10.4064/ap-65-2-157-161
Cité par Sources :